

THE ULTIMATE GUIDE TO MFCOM

Dr. SDK

© Copyright 2008

Citrix Systems, Inc.

The Ultimate Guide to MFCOM

2

The information presented in this document is subject to change without notice.

THIS PUBLICATION IS PROVIDED .AS IS. WITHOUT WARRANTIES OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE OR NON-INFRINGEMENT. CITRIX SYSTEMS, INC. (“CITRIX”) SHALL

NOT BE LIABLE FOR TECHNICAL OR EDITORIAL ERRORS OR OMISSIONS CONTAINED

HEREIN, NOR FOR DIRECT, INCIDENTAL, CONSEQUENTIAL OR ANY OTHER DAMAGES

RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS PUBLICATION,

EVEN IF CITRIX HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES IN

ADVANCE.

Trademark Notice

Citrix, ICA (Independent Computing Architecture) is a registered trademark of Citrix Systems, Inc. in the

United States and other countries.

Trademark Acknowledgements

Microsoft and Windows are registered trademarks of Microsoft Corp. in the United States and other

countries

The Ultimate Guide to MFCOM

3

Table of Contents

1 Getting Started ··· 8

1.1 A Brief History of MFCOM ···8

1.2 What Is COM ···8

1.3 MFCOM Architecture···9

1.4 How MFCOM Works ·· 11

1.5 The MFCOM SDK ··· 16

1.6 MFCOM Remote Access ··· 18

1.7 Online Resources ·· 19

2 Basic MFCOM Scripting ··· 19

2.1 Windows Scripting Host··· 19

2.2 Who Is Allowed To Use MFCOM ·· 20

2.3 Basic Structure of Scripts ··· 21

2.4 Common Script Components ··· 21

2.4.1 Display Data ··· 23

2.4.2 Command Line Arguments ·· 24

2.4.3 MSDN Online References ··· 24

2.5 Your First Real Script ··· 25

2.5.1 Start Simple ·· 25

2.5.2 Make It More Useful ·· 26

The Ultimate Guide to MFCOM

4

2.5.3 Use Command Line Arguments ··· 28

2.5.4 Accept Multiple Server Names ·· 30

2.5.5 Accept Folder Names ··· 31

2.5.6 Working Script ··· 33

3 Production Scripts ··· 35

3.1.1 Error Handling in VB··· 35

3.1.2 MFCOM Error Codes ·· 38

3.2 Advanced MFCOM Scripts ··· 39

3.2.1 Multi-farm Management ··· 39

3.2.2 OBDA ·· 41

3.2.3 Helpdesk Application ··· 46

3.2.4 Office Integration ··· 46

3.3 Another Script ··· 50

3.3.1 Script Specification ·· 50

3.3.2 MFCOM Objects ··· 51

3.3.3 Command Line Parsing ·· 52

3.3.4 Check User Privileges ··· 53

3.3.5 Edit Application’s Server list ·· 54

3.3.6 The Complete Code ··· 55

3.4 Load Evaluator Operations ·· 57

3.4.1 Task List ·· 57

3.4.2 Command Line Specification ··· 58

The Ultimate Guide to MFCOM

5

3.4.3 Command Line Parsing ·· 59

3.4.4 Create a Load Evaluator ··· 61

3.4.5 Delete a Load Evaluator ··· 62

3.4.6 Modify a Load Evaluator ·· 63

3.4.7 The Complete Code ··· 63

4 MFCOM Internals ··· 69

4.1 Data Flow·· 69

4.2 Batched IMA Calls ··· 71

4.3 IDispatch Interface ·· 72

4.4 Indirect Reference ··· 73

4.5 MFCOM Related Registry Entries ··· 77

5 Major MFCOM Objects ··· 77

5.1 Application ··· 77

5.1.1 Application Type ·· 77

5.1.2 Valid Application Properties ·· 79

5.1.3 Validation ··· 82

5.1.4 Error Processing ··· 84

5.2 Server ··· 85

5.3 Session ··· 85

5.3.1 Common Session Data ··· 86

5.3.2 Basic Session Data ·· 87

5.3.3 Client Data ··· 87

The Ultimate Guide to MFCOM

6

5.3.4 Additional Client Data ·· 88

5.3.5 Winstation Data ··· 88

5.3.6 SMC Counters ·· 88

5.3.7 Side Effects ··· 89

5.4 Load Evaluator ·· 89

5.5 Account ·· 90

5.6 Administrator·· 93

5.7 Printer ·· 94

5.8 Policy ·· 96

5.9 Farm ··· 97

6 Debugging MFCOM ·· 97

6.1 Tracing ·· 98

6.2 Data store viewer ·· 99

7 Other SDKs ··· 100

7.1 WFAPI ··· 100

7.2 ICO and VCSDK ·· 100

7.3 PowerShell-based interface ··· 101

The Ultimate Guide to MFCOM

7

Part One

Scripting

The Ultimate Guide to MFCOM

8

1 GETTING STARTED

This chapter introduces the basics of MFCOM, COM in general, VB scripting, and simple MFCOM scripts.

The goal of this chapter is to let readers who are not familiar with either MFCOM or scripting to be able

to write simple MFCOM scripts.

1.1 A BRIEF HISTORY OF MFCOM

MFCOM first appeared in 2001 as a hotfix for MetaFrame XP 1.0, which was released about 6 months

prior to the hotfix release.

Initially, MFCOM was created as an SDK only for external use. This was a result of the fact that the

internal interface, IMA, was too complicated to be released as an SDK. So during the development, we

decided to make an SDK for customers and partners.

At the time the only server SDK available was WFAPI (WinFrame API), which is still available and

supported today on Presentation Server. We had some debates about completely replacing WFAPI

because it seemed to be unnecessary given that most of its functions were implemented in IMA. But in

the end we realized that we’d be better off to leave WFAPI alone.

So we decided to create an SDK. We could follow the WFAPI model to create a traditional Win32 kind of

C/C++ library. But we decided to do a COM module. The advantage was obvious, COM was considered

the best technology at the time, when using COM was just like using .NET now days.

MFCOM gained popularity as more people started using it and those usages got fed back to Citrix. Then

at Citrix, people realized that we shouldn’t continue the strategy of maintaining an internal interface

(IMA) and an external interface (MFCOM) separately. So there was a push to use MFCOM internally as

well. The migration was not easy because of the size of the code. So we took baby steps. As of now, the

migration is still in progress, as evidenced by the dual console arrangement.

MFCOM now covers everything provided by IMA, with the exception of RM, which is being phased out

anyway. So there’s no plan to support RM.

1.2 WHAT IS COM

COM stands for Component Object Model. It’s a mature technology and at some time it was as hot as

.NET is now. The basic idea behind COM is that it provides an architecture for people to create reusable

modules in any language (and on any platform, although it’s really just Windows). There are tons of

The Ultimate Guide to MFCOM

9

books and other resources on COM, so we won’t spend more time to describe COM here. But I’d just list

a few things that are important for rest of this document.

1. COM modules can be implemented as a DLL or an executable. When it is implemented as a DLL,
it is usually called an in-proc COM server. When it is implemented as an executable, it is called
an out-of-proc server. A DLL may be turned to an out-of-proc server using the Microsoft hosting
agent, dllhost.exe. MFCOM is implemented as an out-of-proc server.

2. A COM module needs registration, a process that basically populates the registry with some
entries so that everyone knows where to find the metadata that describes the COM interfaces.

3. COM supports remote connections using DCOM (Distributed COM). In the early days DCOM and
COM were different concepts. Now there is almost no distinction between the two concepts. A
COM module typically supports DCOM connections.

4. COM/DCOM needs some careful system configurations, which are complicated further with the
recent security push by Microsoft. What’s worse is that the configuration tool, DCOMCNFG.EXE,
has different UI looks on different Windows platforms. The configurations are needed not only
on the servers, but also on the clients.

5. COM is mature and not being actively developed anymore by Microsoft, although it will still be
supported by Microsoft for a long time, as evidenced by the significant amount of resources
spent on supporting COM in .NET. There are certainly limitations and differences in using COM
from .NET. Largely, COM is .NET friendly.

1.3 MFCOM ARCHITECTURE

MFCOM is the top-most layer of the Presentation Server management interface. It is exposed externally

to customers. The interface is documented and can be used by customers.

MFCOM is a very thin layer, which basically just translates the external calls to internal IMA calls.

Although that appears to be a simple summary of what it does, there are the following distinctions that

should be noted.

1. IMA is a RPC style interface. It provides a C++ interface to its users. MFCOM is a COM interface.
2. IMA is procedural oriented. Each call is designed to accomplish a specific task. MFCOM is object

oriented. The basic unit of operations is an object.
3. IMA and MFCOM run in separate processes. Both are NT services. MFCOM depends on IMA.

So in summary, MFCOM is a COM module that runs as an out of process NT service.

So why did we choose to implement MFCOM as an out of process NT service?

1. Logically, the COM interface can be provided by the IMA process. We never gave that idea any
serious consideration because we’d like to maintain the architectural integrity of IMA. Adding a
COM to IMA would put additional requirements on IMA and those requirements may not be
best supported by IMA or may even not be compatible with what IMA was designed to do.

The Ultimate Guide to MFCOM

10

2. So we decided to create a separate module. Creating an in-proc DLL meant that the DLL would
have to be installed on every user’s machine. Not only that, because the DLL had to use so many
IMA calls, it would cause almost the entire IMA to be installed on every user’s client machine.

3. An out-of-proc module was the only choice. An NT service also was a natural fit for it because it
would allow the COM interface to be available after a system reboot. We would be able to use
the standard RPC impersonation technology to implement security.

Beyond the decision on the module, we also needed to consider what kind of COM thread model we

should use. Thread models are defined by Microsoft to represent the ways COM request are processed

inside a COM module. This is not visible to a MFCOM user but it’s worthy of mentioning here in the

event that you need such information (very unlikely if you just write scripts, useful if you write

complicated UI code).

We chose to implement a free-threaded apartment model in MFCOM. What this means is that MFCOM

can use any available thread to serve a remote request. This is the hardest model to implement but it

gives you the highest performance because multiple requests can be processed in the most efficient

way.

As we decided to use MFCOM to implement the CWC (Citrix Web Console), which is a web-based

simplified version of the Java-based CMC. During the development, we found some scalability issues,

here are a few notable examples.

1. MFCOM service start/stop. According to the COM specification, one of the requirements was

that a COM server should shut itself down if there’s nothing connect to it. The aim was obvious,

to save system resources. But that didn’t really well in MFCOM when it was first implemented

in the strictest sense. When the CWC developer ran his tests, the performance was horrible.

MFCOM would be started and then stopped because there was nothing to do. So when the next

request comes, Windows starts MFCOM, which processes the request and becomes idle again

without anything to do. So it shuts down itself. Because the COM requests come in small bursts,

MFCOM gets shuts down and restarted very frequently. Imagine that your computer restarts

after you type every key. That was how bad it was. So we studied the COM specification and

decided that it didn’t make any sense. So we kept the MFCOM process running at all times.

2. IMA connection from MFCOM. The original implementation of gathering the session data was to

always return the “real-time” data for sessions. So MFCOM would return some sessions

enumerated from the IMA, return the data to the caller. Then when the caller comes back with

another request to query more session data, MFCOM goes to IMA to make another request to

get the data about that session. Thus the data originally obtained from the initial IMA session

enumeration call is thrown away. This results in many calls to the IMA process. We changed that

by caching the session data. As long as you keep using the same object, only the data cached in

the object is returned to the caller. We gradually extended this kind of caching to all other

objects. This is probably the most significant performance improvement in MFCOM.

The Ultimate Guide to MFCOM

11

3. The double sided sword of out-of-proc COM server. MFCOM is an out-of-proc COM server. This

means that every time your code accesses an MFCOM object property, your call gets translated

to an RPC call that goes out of your code’s process boundary and into the MFCOM process. You

probably don’t mind such an overhead if you are running a small script. But if you are making

tens of thousands of such small requests, the overhead on every single call adds up to a

significant amount. Unfortunately, unlike the other issues, there’s no easy way to fix this. This is

a COM issue, not just an MFCOM issue. So big is this issue that we’ve attempted to create

another module to solve the problem. You’ve probably heard about CPSSDK. That’s our solution

to fix this issue. But don’t count on it, that strategy is changing.

1.4 HOW MFCOM WORKS

The following explains step by step about how your code works. It actually applies to all COM modules in

general. I want to fully explain everything to you so that you know exactly what’s going on and what

parts of the Windows and Presentation Server are involved. The information will help you debug your

code if you run into problems.

Let’s start with an actual example. The following is probably the simplest VB script that uses MFCOM:

Save the following code to a file named farm.vbs.

Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

f.Initialize 1

Wscript.Echo f.FarmName

At a DOS command line on a Presentation Server, execute the following command:

 Cscript farm.vbs

You should see the farm name printed.

Although it’s simple, as soon as you hit Enter, many things are happening on the system. Here is a

detailed list of such things.

1. The VB script engine cscript.exe is invoked. It loads the file farm.vbs and starts executing the

commands in this file. The first line is a call to the CreateObject function. This function is a built-

in function provided by VB script engine.

2. CreateObject is given a parameter “MetaFrameCOM.MetaFrameFarm”, which indicates that a

MetaFrameFarm object from the MFCOM server should be created. We’ll explain in further

detail about how the script engine locates MFCOM shortly.

The Ultimate Guide to MFCOM

12

3. The VB script engine, via the COM runtime, calls a class factory for the MetaFrameFarm object

to create the object. This class factory function is exposed to the COM library from MFCOM. This

will also be explained in more detail later.

4. The class factory returns the created MetaFrameFarm object to COM, which forwards it to the

VB script engine, which stores the reference (or pointer, depending on your programming

background) to the variable f, which is defined implicitly in the code.

5. The VB script engine continues to execute the next line, which is to call a method of the object

stored in the variable f. The name of the method is Initialize, which takes a parameter, as

defined by MFCOM. The COM run time sends the call to the MFCOM process using RPC. The

MFCOM process’s method that implements the MetaFrameFarm::Initialize method is called.

This method does its job and returns the result to COM runtime, which forwards the result to

the VB script engine.

6. The VB script engine continues with the next statement, which is executed the same way as the

previous statement. The only exception this time is that some additional data is returned, in this

case, the name of the farm.

7. The script execution ends. The VB script engine closes all the connections to MFCOM via the

COM runtime.

The following page is the timing diagram that illustrates the above process.

The Ultimate Guide to MFCOM

13

0

1

2

3
4

5
6

7
8

9
1

0

COM
Runtime

Timing diagram for MFCOM script execution

MFCOM
Process

Script
Process

Time

CreateObject

Find class factory for

MetaFrameFarm

Create MetaFrameFarm

object

Send MetaFrameFarm

object to caller

f.Initialize

Execute

MetaFrameFarm::Initialize

f.FarmName

Execute MetaFrameFarm::

get_FarmName

Script ends

Release MFCOM

objects

Execute

MetaFrameFarm::Release

The Ultimate Guide to MFCOM

14

At the second step above, how does the system find the binary file and the process it should connect to

serve the CreateObject call? The following steps explain it.

1. Before any VB script has been executed, MFCOM must be registered. The registration code

populates the registry with some entries about MFCOM (if you have ever heard of mfreg.exe,

this is what it does). Some of these entries are pre-defined by COM.

2. When CreateObject is called with the object name “MetaFrameCOM.MetaFrameFarm”, the

COM runtime gets the call. It goes to the registry \\HKLM\Software\Classes\ to find an entry

named “MetaFrameCOM.MetaFrameFarm”. Every COM module must register all of its object

names here. So if you open up the registry using a registry editor, you should see all of your

MFCOM objects registered here. This registration has been done when you install the SDK or

during the Presentation Server installation, which installs MFCOM automatically.

3. COM runtime looks at the CurVer entry under MetaFrameCOM.MetaFrameFarm. The value of

this entry tells COM the current version of the MetaFrameFarm object. This is how COM does its

versioning. So when we update MFCOM for new CPS releases, your code doesn’t change. COM

uses this mechanism to always use the latest version of the interface. In fact, you can change

your code to pass in “MetaFrameCOM.MetaFrameFarm.6” to tell COM to bypass this step and

go directly to use the version 6 of the MetaFrameFarm class. Most people don’t want to do that

because that will tie their code to that specific version of the MetaFrameFarm class.

4. COM goes to the MetaFrameCOM.MetaFrameFarm.6 entry, which is right next to the current

entry. This time it finds a CLSID entry. The value of this entry contains a very long hex number.

This is called a GUID (Globally Unique Identifier, more about GUIDs below). COM follows the

GUID and goes to the entry at \\HKLM\Software\Classes\CLSID\{ED62F4E2-...}

5. From this class ID, COM can find many things it needs. The AppID entry is yet another GUID,

which tells COM everything about MFCOM as a COM server. The entry is found at

\\HKLM\Software\Classes\AppID\{ED62F4E0-...}. Under this entry, COM knows the permissions

that have been configured for MFCOM. The LocalService entry tells COM that MFCOM is running

as an NT service named “MFCOM”.

6. Go to \\HKLM\System\CurrentControlSet\Services\, you should see an entry “MFCOM”. The

values under this entry are used by NT to launch the MFCOM service. So by following the AppID

entry, the COM runtime now has located the NT service that it should connect to for servicing

the CreateObject request.

7. Back to \\HKLM\Software\Classes\CLSID\{ED62F4E2-...}, the TypeLib entry shows yet another

GUID. This GUID tells COM where to find the metadata that describes all the objects, interfaces,

calling parameters, and types of all the parameters and tons of other information. Basically this

type library stores the entire MFCOM interface description in binary format. From this type

library, COM is able to know everything about the MetaFrameFarm object, its properties and

methods, and the parameters and types for each property and method. The type library can be

found at \\HKLM\Software\Classes\TypeLib\{ED62F4E0-...}, if you traverse down, you’ll be able

to find the binary file that has the type library stored.

The Ultimate Guide to MFCOM

15

8. So now COM knows the service to connect. But how does it obtain the pointer to the class

factory function we mentioned earlier to have the class created? This information is not visible

from the registry (why?). During MFCOM startup, some COM registration functions have been

called to have the pointers stored in the system. So COM now has the pointer to the class

factory and using the pointer, it is able to create the MetaFrameFarm object.

The following flowchart illustrates the above process.

What is a GUID? GUIDs are used not only in COM but also many other applications. They are also not

limited to Windows. A GUID is a 128 bit integer. Typically a GUID generator generates a GUID for you if

Start

Flow chart showing MFCOM object resolution process

CreateObject(“MetaFrameCOM.MetaFrameFarm”)

Look for registry entry \\HKLM\Software\Classes\MetaFrameCOM.MetaFrameFarm

Find value of \\HKLM\Software\Classes\MetaFrameCOM.MetaFrameFarm\CurVer

Find CLSID under \\HKLM\Software\Classes\MetaFrameCOM.MetaFrameFarm.6

Go to \\HKLM\Software\Classes\CLSID\{ED62F4E2...}

Go to

\\HKLM\Software\Classes\AppID\{ED62F4E0...}

Go to

\\HKLM\Software\Classes\TypeLib\{ED62F4E0...}

Find value of LocalService, which should be a

string “MFCom”

Connect to the NT service named “MFCom”

Find value of 4.5\0\Win32, which maybe be

“c:\Program Files\Citrix\System32\mfcom.exe”

Read binary type data

The Ultimate Guide to MFCOM

16

you need one. The algorithm used by the generator guarantees that the identifier will be unique in the

universe. All MFCOM GUIDs starts with ED62Fxxx.

Although the above steps clearly explain how everything works, there is a problem with it. If for every

COM request we go through the above process, COM will be so slow that it won’t be usable. It doesn’t

make sense to check the registry for every call. So the above process has been highly optimized.

Everything needed at run time has been cached in the memory during the MFCOM startup and

registration. So when CreateObject and the subsequent calls are made, no registry access is actually

performed. COM has stored everything in the memory.

As for the reason why the class factory pointers are not stored in the registry, it simply doesn’t make

sense to store some data that is only valid at run time. The registry is used to store persistent

information. The pointers to the class factories change every time you start MFCOM.

That’s basically how MFCOM and COM work. The processes are different but similar if you use C++ or a

.NET language such as C#. For example, in C++, the parameter checking is done differently and calling

into the methods and properties of the objects also takes a different route.

1.5 THE MFCOM SDK

OK, let’s take a break from the heavy technical stuff. Now that you know you need MFCOM, so how do

you start using it?

To use MFCOM, all you need to do is to have access to a Presentation Server. MFCOM is already

installed on all CPS servers and ready to be used without any additional configuration. That’s why we

were able to write our simple script and execute it right away.

For most users, however, the MFCOM SDK is a tool that they need to get familiar with first. If you’ve

never used MFCOM before, there’s no way that you’ll be able to write scripts without any

documentation. Even for savvy developers who are able to see the metadata using some .NET or other

object browsers, they’ll have no clue to get started.

The MFCOM SDK has gone couple of name changes. The latest name is MPSSDK. When it first came out,

it was one of the components of the old CSSDK (Citrix Server SDK). That name got changed to MPSSDK

(MetaFrame Presentation Server SDK) some time ago. Now we call it MPSSDK although our server name

has been changed to Citrix Presentation Server. We chose not to change the SDK name to CPSSDK

because there was a “new” SDK that has already taken that name. Now that “new” SDK is all but dead,

but the MPSSDK is still here. Don’t ask me what the M stands for. It’s just MPSSDK, OK!

The Ultimate Guide to MFCOM

17

You can download the MPSSDK from www.citrix.com, downloads, SDKs, which brings you to the CDN

page http://community.citrix.com/cdn/. You have to have an account registered on CDN to get access to

this page. Then you can click on Software Development Kits, Presentation Server SDK, and the download

link. The ways to download the SDK have changed many times. So just explore around, you should be

able to find and download the SDK.

Installation of the SDK is simple, just run the MSI file and follow the dialogs. Note that you can install the

SDK on a Presentation Server or any Windows systems. If you are running on a Presentation Server, all

the install does is copying some files to the installation location.

If the SDK is being installed on a non-CPS server, before installing the SDK, take a look at the registry,

e.g., \\HKLM\Software\Classes and try to find entries like MetaFrameCOM.MetaFrameFarm. They

should not be there. During the SDK installation, if you have checked to have a remote CPS server

registered, mfreg.exe should have been called during the install. It populates your registry with those

MFCOM entries.

The default install location is C:\Program Files\Citrix\MPSSDK. Under that directory, you can find

examples, the mfreg.exe tool, and the reference guide.

The main part of the reference guide is the complete listing of all the MFCOM objects, interfaces,

properties, and methods in alphabetic order. The other pages describe installation, configuration, and

high level information on how to use MFCOM. You should consult the reference guide frequently when

you start writing scripts. If you use intelli-sense in Visual Studio, you may not need the reference guide if

you are familiar with MFCOM.

Tips on using the reference:

1. Think about what you are going to do and find the reference for that object, drill down to

interfaces and properties to find the calls you need. Pay attention to every word in the object

and interface description as we are very frugal on using words.

2. Most enumerations are at the farm level. So from the farm level you should be able to

enumerate many things. But enumerations actually exist whenever it makes sense. For the exact

syntax, refer to the reference when you think about an enumeration.

3. If you dare, you can also try to use the reference together with the MFCOM Class Diagram. This

is a huge picture. A good way to use it is to search for a word and then look around the word to

find out the relationship with the other objects.

The MFCOM Class Diagram is posted somewhere on Citrix.com. If you search “MFCOM Class Diagram”

on the web, usually the first link is the download link for this diagram, which is a PDF file.

http://www.citrix.com/
http://community.citrix.com/cdn/

The Ultimate Guide to MFCOM

18

1.6 MFCOM REMOTE ACCESS

To use MFCOM remotely, you can do one of the following.

1. Install the SDK and enter a remote Presentation Server name at the dialog that asks if you want

to register a remote Presentation Server.

2. Copy mfreg.exe from a Presentation Server or from another SDK installation. The mfreg.exe is

typically found at C:\Program Files\Citrix\System32. You should also be able to find mfcom.exe

there. Run mfreg.exe with the name of the remote Presentation Server name on the command

line.

That’s it. However, you need to know the following caveats.

1. If you are using a Windows XP system, run DCOMCNFG and make sure the impersonation level

for COM servers is set to “Impersonate”. No other settings work. In fact, it’s a good practice to

check this setting on both the server and client machines. This is the number one cause of the

“Access Denied” and many other similar errors.

2. Make sure you put your client system in the same domain as your Presentation Server. Logon to

your client system using a network credential that works on the remote Presentation Server.

Ensure that the domain account is also a Citrix administrator. This is another common source of

problems regarding accessing MFCOM, either locally or remotely.

3. Make sure your client system’s MFCOM registration matches that of the remote Presentation

Server’s. Your mfreg.exe cannot be just from any source and any version of the SDK. Every

Presentation Server and SDK release updates MFCOM and the registration data stored in

mfreg.exe is also updated. It’s safe to remotely connect from an older version of the client to a

newer version of the Presentation Server. But not the other way.

Just in case that for some reason that you messed up your remote server registration, you can do the

following to fix it.

1. Unregister MFCOM on the client machine. Run “mfreg /u” or “mfreg /unregserver” to remove

MFCOM registration on your client machine.

2. Copy mfreg.exe to the MFCOM client machine from a Presentation Server, to which you will

connect from that machine. Run mfreg.exe with the Presentation Server name as the command

line parameter. This should fix the registries.

WARNING: You should never change MFCOM registration on your Presentation Server.

The Ultimate Guide to MFCOM

19

1.7 ONLINE RESOURCES

There are many websites that host discussion forums on MFCOM. The Citrix CDN site maintains a script

repository that allows people to upload scripts that can be shared by MFCOM users. Many scripts are

written by Citrix engineers. I contributed a few of them.

2 BASIC MFCOM SCRIPTING

You can write scripts in any language you like. Almost all languages are supported by COM, including

those of UNIX origin. So it shouldn’t be a hard choice if you are already familiar with certain languages.

In this document, we’ll focus on WSH scripting. If your world is Windows, it benefits you a great deal to

learn WSH scripting, which is mostly VB scripting. VB scripts are based on VB, which is far easier to learn

and use than C++.

OK. You’ve decided on using WSH, what editor should you use? I’m really a novice at using good editors.

Most of time I use notepad (and vi), which really doesn’t give you any special support. It’d be nice to

have a script editor that knows the syntax of VB script and supports intelli-sense, which prompts you

with data associated with a variable or type. When writing scripts, however, I have to use the reference

guide.

There are some commercial or even free editors. But I’ve not tried anything. I don’t write a lot of scripts.

Any time I need to write one, I just copy from an existing one and make some changes. So notepad has

worked for me. If you find a good script editor, use it.

2.1 WINDOWS SCRIPTING HOST

Windows Scripting Host is a script engine provided by Microsoft. It accepts a script file in XML format,

which allows you to provide more information to the script engine. The previous farm.vbs script now

should look like the following in WSH. Save the code below to farm.wsf and run it using cscript.exe.

<package>

 <job id="farm">

 <reference object="MetaFrameCOM.MetaFrameFarm"/>

 <script language="vbscript">

 Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

 f.Initialize MetaFrameWinFarmObject

 Wscript.Echo f.FarmName

 </script>

 </job>

</package>

The Ultimate Guide to MFCOM

20

Can anyone name the differences?

There are many differences. It’s obvious that now there are some XML tags like package, job, script, etc.

But those are not important. In fact to this day I still don’t know exactly what those tags do. I just copied

a script written by one of my co-workers and have been using the template ever since. So those tags are

not import.

What’s important is the <reference> tag, which specifies a reference to MFCOM. This reference

causes the script engine to load the metadata stored in the type library of MFCOM. One of the benefits

by having the metadata is that we can now use literals in our code, note the parameter to f.Initialize.

This makes the code much friendlier to use.

Using the language attribute, you can specify the scripting language you want to use. I’ve always used

VBScript, so I’m not qualified to say how other languages can be used. But I’ve seen people using

something like JavaScript.

So from now on, every script you write must contain the <reference> tag to ensure that you have the

MFCOM metadata available. Note that you don’t have to always specify the MetaFrameFarm object for

the reference. You can specify any MFCOM object. They all cause the script engine to load the entire

MFCOM type library.

2.2 WHO IS ALLOWED TO USE MFCOM

Only Citrix administrators are allowed to access MFCOM. If you’ve written a script, how can you make

sure that your code executes cleanly for all users? If the user is an administrator, your code should run

without problems. If the user is not an administrator, your code should exit gracefully. The following

code checks if the current user is a Citrix administrator or not. This piece of code is used in many scripts.

It’s a good practice to do the checking.

<package>

<job id="AmIAdmin">

 <reference object="MetaFrameCOM.MetaFrameFarm"/>

 <script language="vbscript">

 Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

 f.Initialize MetaFrameWinFarmObject

 If f.WinFarmObject.IsCitrixAdministrator = 0 Then

 WScript.Echo "You are not a Citrix administrator"

 Else

 WScript.Echo "You are a Citrix administrator"

 End If

 </script>

The Ultimate Guide to MFCOM

21

 </job>

</package>

Save the above code to a file named amiadmin.wsf and run it using cscript.exe.

2.3 BASIC STRUCTURE OF SCRIPTS

We’ve seen some script examples in the previous sections, so let’s get familiar with everything in a

typical script now. Note the following.

 A WSH script is typically named with a .wsf extension.

 To execute a WSH script, use cscript.exe with the script file as file name. Use the /H flag for

cscript.exe to set the default execution script to cscript.exe.

 The <reference> tag is used to specify a reference to MFCOM.

 The language attribute of the <script> tag should be set to “vbscript”.

To write your script, ignore the other XML tags. A script basically consists of the following:

 Variable declaration. VB script allows you to either explicitly or inexplicitly use a variable. It’s a

good practice to use the “option explicit” directive at the beginning of the script to ensure that

all variables are declared before being used. If you don’t have the “option explicit” directive, the

default is that all variables are defined as they are used. In our previous examples, we didn’t

declare the variables. A variable is declared using the “dim” statement. For example, to declare

a variable f, just write: “dim f”.

 All variables are of no types. The types are determined by the script at runtime. In COM terms,

these variables are all of the type VARIANT. VB runtime knows the types from the metadata

provided by the COM module involved.

 Statements. If you are familiar with C/C++, you know every program must have a “main”

function. VB script doesn’t require that. So you can write your code without worrying about how

a script should be organized. You can just write your statements right away.

 Functions and subroutines. You can define a subroutine to do a specific set of tasks so that they

can be re-used in the other parts of the script. Subroutines can take parameters but they don’t

return results. Functions are similar to subroutines, except they must return data to the caller.

2.4 COMMON SCRIPT COMPONENTS

We’ll have a brief look at the commonly used language components in this section.

The Ultimate Guide to MFCOM

22

One of the most powerful features of VB scripting is its ability to support COM objects in a seamless

way. To use an object, you just need to call the function CreateObject, which returns a reference to the

object. Afterwards, the properties and methods of objects can be used. As we have seen previously, a

method or property of an object can be referenced by using a “.” after the variable that stores the

object reference.

In VBScript, everything is simple. There is no exception when it’s about defining and using a subroutine.

To define a subroutine, you just need to use the Sub keyword and end the routine using the End Sub

keywords. The parameter list is straightforward. You can use the parameters anyway you want. VBScript

is interpretive language, which means that everything is resolved at runtime. That is why you can

declare a parameter (and a variable) without specifying its type. The first use of the parameter or

variable determines the type.

The following code example shows the definition of a subroutine and its usage.

Sub MySub(p)

 WScript.Echo "MySub, parameter is " & p

End Sub

MySub "call MySub"

A function is declared almost the same way, here’s an example.

Function MyFunc(p)

 MyFunc = p + 1

End Function

WScript.Echo MyFunc(5)

A function is declared using the Function keyword and it must end with the End Function keywords.

Note that the name of the function must be assigned some value somewhere in the function.

All non trivial programs must contain loops, VBScript offers several ways to do loops. Surprisingly, or just

may be because most of MFCOM scripts are simple, we usually need only to use just one type of loop

statement, as shown below.

For Each s In f.Sessions

 WScript.Echo s.SessionId

Next

The Ultimate Guide to MFCOM

23

This statement displays the session IDs of all sessions in a farm, assuming that the variable f has been

initialized as a reference to a MetaFrameFarm object.

The For Each statement ends with the Next keyword. On the For Each line, you need to declare a

variable and use the In keyword to specify the collection (of anything, mostly collection of objects) to be

enumerated. In between the For Each and Next lines, the loop body contains the code that uses the

variable that holds the reference to the enumerated item.

To direct the program execution flow based on the values of the data, you need to use conditional

statements. Most of the time, you use the If statement. Not surprisingly, the If statement ends with the

End If keywords. Here’s an example.

If s.SessionId = 5 Then

 WScript.Echo "Found session 5"

Else If s.ServerName = "MyServer"

 WScript.Echo "Found session on MyServer"

Else

 WScript.Echo "Other sessions"

End If

The condition of an If statement must evaluate to a Boolean. Note that VB is designed to be closer to

natural languages than many other programming languages, e.g., C++. So to negate a Boolean value, you

use the NOT keyword. You also use keywords like And or Or to combine two Boolean values. To check if

a variable really contains a reference to an object or not, you can use a statement like this:

If s Is Nothing Then

 WScript.Echo "s points to nothing"

End If

Here Is is a keyword and Nothing is a built-in value. If you are from C++ world, you may be attempted to

say: “If s == Null Then”, which doesn’t work in VB world. In fact, Null is not even defined in VB.

2.4.1 Display Data

To display data to the console, you just need to use the WScript.Echo call.

How do you display a message box? Use the MsgBox function.

To dump data to a file, use the Scripting.FileSystemObject object. Use the MSDN reference to find out

the methods and properties you can use with this object. For example, to create a file, call the

CreateTextFile method. To write some data to the file, use the Write method.

The Ultimate Guide to MFCOM

24

Sometimes you may wish to generate a report. For example, you may want to generate a spreadsheet of

application usage on every Friday. To do this, you can just output the data to a file, name the file with

.csv as the extension, and separate each piece of data using comma. You’ll then be able to view the data

using Microsoft Excel.

A more advanced approach may involve writing a macro for Word, Excel, or even PowerPoint. Virus

concerns may discourage this type of application. In that case, you may choose to write an add-in, which

is probably beyond the scope of this class.

2.4.2 Command Line Arguments

Many scripts do more than just one thing. If you allow the script user to specify certain input on the

command line, then your script will be more versatile. To accept command line parameters, use the

Wscript.Arguments collection, which contains the arguments on the command line. The Count property

tells you how many arguments are included in the collection. Unlike VB, the collection index is zero-

based. So Arguments(0) contains the first argument. The following code shows the use of the command

line arguments.

Wscript.Echo "There are " & Wscript.Arguments.Count & " arguments"

For I = 0 To Wscript.Arguments.Count - 1

 Wscript.Echo Wscript.Arguments(I)

Next

Note the use of the For loop statement.

You should write robust code that checks the argument count and may be argument values as well to

ensure that all required input are specified on the command line.

Another way to take user input is to read it from the console, using the Wscript.Read method, which

returns the data entered by the user as a string.

2.4.3 MSDN Online References

We can say only so much about VB programming in general. This is not a book on VB programming.

We’ve gone through a few things that are frequently used in MFCOM scripts. Since you may write many

different kinds of scripts for different applications, it’s impossible to cover all the potential usage of VB

in just a few paragraphs. The best way for you to improve your scripting skills is to get started, keep

trying, and at any time if you don’t know how something works, consult the MSDN reference.

The Ultimate Guide to MFCOM

25

The link for Microsoft scripting is at http://www.microsoft.com/vbscript. You may be redirected to some

other links. If this doesn’t work, you may just search using words like Windows Scripting Host, which

usually brings you to the Microsoft scripting pages.

All online references for scripting can be found there and there are also numerous excellent examples.

2.5 YOUR FIRST REAL SCRIPT

By now we should know enough to write a MFCOM script that does some real work. In this chapter,

we’ll try to write a script that disables/enables logons on one or more servers.

2.5.1 Start Simple

Save the following code to a file named slon.wsf.

<package>

 <job id="slon">

 <reference object="MetaFrameCOM.MetaFrameFarm"/>

 <script language="vbscript">

 Option Explicit

 ' Create the farm object and ensure the caller is

 ' a Citrix administrator

 Dim f

 Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

 f.Initialize MetaFrameWinFarmObject

 If f.WinFarmObject.IsCitrixAdministrator = 0 Then

 WScript.Echo "You are not a Citrix administrator"

 Wscript.Quit 0

 End If

 ' Create the WScript.Shell object, which provides many

 ' properties and methods to access system resources.

 Dim ws

 Set ws = WScript.CreateObject("WScript.Shell")

 ' Get the environments.

 Dim pe

 Set pe = ws.Environment("PROCESS")

 ' Get the name of the current server that is running

 ' this script.

 Dim ServerName

http://www.microsoft.com/vbscript

The Ultimate Guide to MFCOM

26

 ServerName = pe("COMPUTERNAME")

 ' Create the MFCOM server object and initialize it

 ' using the current server name.

 Dim s

 Set s = CreateObject("MetaFrameCOM.MetaFrameServer")

 s.Initialize MetaFrameWinSrvObject, ServerName

 ' Disable logon to the server

 s.WinServerObject.EnableLogon = FALSE

 </script>

 </job>

</package>

We start with a very simple use case. We assume that the script is run only on the server whose logon

will be disabled. If you are not familiar with WSH script, from the code you can see how you can get the

name of the current server by using the WshShell object, which is a built-in object provided by WSH

runtime. Note also that we are using the Option Explicit attribute for the entire script. This forces the

rest of the script to have all the variables declared before they can be used.

In VBScript, any text after the single quote is treated as comments and ignored by the runtime.

2.5.2 Make It More Useful

The script is clearly not of much use because it has many things hard coded. Next we’ll try to allow the

user to specify the name of the server whose logon will be disabled. In the following sections, we’ll

continue to list the code but without the XML tags, which remain unchanged.

New code is highlighted and replaced code is crossed out and won’t be shown in the next listing. In

other words, only the most recent changes are shown.

Option Explicit

' Create the farm object and ensure the caller is

' a Citrix administrator

Dim f

Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

f.Initialize MetaFrameWinFarmObject

If f.WinFarmObject.IsCitrixAdministrator = 0 Then

 WScript.Echo "You are not a Citrix administrator"

 Wscript.Quit 0

End If

The Ultimate Guide to MFCOM

27

' Get the command line arguments

Dim Args

Set Args = Wscript.Arguments

' Create the WScript.Shell object, which provides many

' properties and methods to access system resources.

Dim ws

Set ws = WScript.CreateObject("WScript.Shell")

' Get the environments.

Dim pe

Set pe = ws.Environment("PROCESS")

' Get the name of the current server that is running

' this script.

Dim ServerName

ServerName = pe("COMPUTERNAME")

' Get the name of the server from the command line if it is provided.

' Otherwise use the current server name. We always assume that only

' the first parameter on the command line is used as a server name.

If Args.Count > 0 Then

 ServerName = Args(0)

End If

' Create the MFCOM server object and initialize it

' using the current server name.

Dim s

Set s = CreateObject("MetaFrameCOM.MetaFrameServer")

s.Initialize MetaFrameWinSrvObject, ServerName

' Disable logon to the server

s.WinServerObject.EnableLogon = FALSE

To run the above code, you need to supply a server name. If you don’t, the current server will be used.

There is still another assumption, that is, the script always disables logon. What if we want to enable

logon to a server? We can copy and paste and make another very similar script. Or we can modify this

script and allow user to specify if logon will be enabled or disabled, which is a better approach.

The Ultimate Guide to MFCOM

28

2.5.3 Use Command Line Arguments

Because now we have to deal with potentially two optional parameters, we have to design a well

formed command line argument list. So to allow the script to be able to deal with a few more use cases,

we accept the following command line arguments:

Cscript slon.exe [-Enable] [ServerName]

This command line specification is described using BNF (Backus-Naur form, John Backus invented

Fortran). The square brackets indicate that the stuff inside them is optional. In this case, the entire

command line is optional. The first optional parameter is called a switch (or sometimes, flag) and by

convention such parameters are preceded with a dash, which allow us to distinguish it from a server

name. By doing so, we assume that the server name can’t be named as “-Enable”, which should be an

acceptable restriction. The use of dash (-) is more common in Unix commands, in DOS historically slash

(/) has been used as a switch character. Now the trend is to also accept (-) and many implementations

accept both. I used to be a Unix guy, so I’ll stick with Unix.

The following table lists all the possible combinations of the command line specification

Cscript slon.wsf Disable logon for the current server
Cscript slon.wsf –Enable Enable logon for the current server
Cscript slon.wsf Server1 Disable logon for server named “Server1”
Cscript slon.wsf –Enable Server1 Enable logon for server named “Server1”
Cscript slon.wsf Server1 –Enable Same as above

The new code that takes care of the command line input is listed below.

Option Explicit

' Create the farm object and ensure the caller is a Citrix administrator

Dim f

Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

f.Initialize MetaFrameWinFarmObject

If f.WinFarmObject.IsCitrixAdministrator = 0 Then

 WScript.Echo "You are not a Citrix administrator"

 Wscript.Quit 0

End If

' Get the command line arguments

Dim Args

Set Args = Wscript.Arguments

' Create the WScript.Shell object, which provides many

The Ultimate Guide to MFCOM

29

' properties and methods to access system resources.

Dim ws

Set ws = WScript.CreateObject("WScript.Shell")

' Get the environments.

Dim pe

Set pe = ws.Environment("PROCESS")

' Get the name of the current server that is running this script.

Dim ServerName

ServerName = pe("COMPUTERNAME")

' Parse the command line.

Dim fEnable, I

fEnable = False

For I = 0 To Args.Count - 1

 If UCase(Args(I)) = "-ENABLE" Then

 fEnable = True

 Else

 ServerName = Args(I)

 End If

Next

' Create the MFCOM server object and initialize it

' using the current server name.

Dim s

Set s = CreateObject("MetaFrameCOM.MetaFrameServer")

s.Initialize MetaFrameWinSrvObject, ServerName

Dim MsgStr

If fEnable = True Then

 MsgStr = "Enabling"

Else

 MsgStr = "Disabling"

End If

Wscript.Echo MsgStr & " logon for " & ServerName

' Disable/enable logon to the server

s.WinServerObject.EnableLogon = fEnable

If you take a closer look at the command line parsing code, you can see that it doesn’t exactly do what is

specified. It actually allows unlimited number of –Enable and server name specifications. The server

name that is last on the command line will be the one used. This should be ok. The use of For loop

makes it easier for us to expand the code to accept more server names, which is our next improvement

to the code.

The Ultimate Guide to MFCOM

30

2.5.4 Accept Multiple Server Names

The following code accepts multiple servers specified on the command line.

Option Explicit

' Create the farm object and ensure the caller is a Citrix administrator

Dim f

Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

f.Initialize MetaFrameWinFarmObject

If f.WinFarmObject.IsCitrixAdministrator = 0 Then

 WScript.Echo "You are not a Citrix administrator"

 Wscript.Quit 0

End If

' Get the command line arguments

Dim Args

Set Args = Wscript.Arguments

' Create the WScript.Shell object, which provides many

' properties and methods to access system resources.

Dim ws

Set ws = WScript.CreateObject("WScript.Shell")

' Get the environments.

Dim pe

Set pe = ws.Environment("PROCESS")

' Get the name of the current server that is running this script.

Dim ServerName

ServerName = pe("COMPUTERNAME")

' Parse the command line.

Dim fEnable, I, MsgStr, s

fEnable = False

For I = 0 To Args.Count - 1

 If UCase(Args(I)) = "-ENABLE" Then

 fEnable = True

 Else

 ServerName = Args(I)

 ' Create the MFCOM server object and initialize it

 ' using the current server name.

 Set s = CreateObject("MetaFrameCOM.MetaFrameServer")

 s.Initialize MetaFrameWinSrvObject, ServerName

The Ultimate Guide to MFCOM

31

 If fEnable = True Then

 MsgStr = "Enabling"

 Else

 MsgStr = "Disabling"

 End If

 Wscript.Echo MsgStr & " logon for " & ServerName

 ' Disable/enable logon to the server

 s.WinServerObject.EnableLogon = fEnable

 End If

Next

As you can see the change is very simple, we just moved a whole block of code inside the For loop. Now

the script is able to enable/disable multiple servers given on the command line.

However, there’s a problem with this change. Now if there’s no argument specified, the script does

nothing. So to support that case, we should check the Args.Count property and if it is 0, we should get

the current server name and disable the logon on it. This change can be left as an exercise.

There is also another interesting effect from this change. That is you can enable and disable logons on

the servers at the same time. Any server name specified before the –Enable switch will have logons

disabled on them and any servers specified after the –Enable switch will have the logons enabled on

them. For example, the following command disables logon on Server1 and enables logon on Server2.

Cscript slon.exe Server1 -Enable Server2

2.5.5 Accept Folder Names

In a large farm, it may not be practical to explicitly enumerate all the servers and require the user to

enter all the server names on the command line. If the servers are grouped in folders, we should be able

to accept a folder name as input and enable/disable logons on all the servers under that folder. It should

be sufficient to make this work for servers only directly under a folder.

Because all server folders are named like \Servers\Folder1\Folder2, we can automatically recognize that

a name is a folder by checking if the name given starts with “\Servers”. Because there are many changes

below, we’ll just list the new code. We’ll also remove some of the comments as most of them are

written to help you get familiar with the code. You should still comment your code so that people who

are not familiar with your code will be able to understand it more easily.

Option Explicit

The Ultimate Guide to MFCOM

32

' Create the farm object and ensure the caller is

' a Citrix administrator

Dim f

Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

f.Initialize MetaFrameWinFarmObject

If f.WinFarmObject.IsCitrixAdministrator = 0 Then

 WScript.Echo "You are not a Citrix administrator"

 Wscript.Quit 0

End If

' Get the command line arguments

Dim Args

Set Args = Wscript.Arguments

' Create the WScript.Shell object, which provides many

' properties and methods to access system resources.

Dim ws

Set ws = WScript.CreateObject("WScript.Shell")

' Get the environments.

Dim pe

Set pe = ws.Environment("PROCESS")

' Get the name of the current server that is running

' this script.

Dim ServerName

ServerName = pe("COMPUTERNAME")

' Parse the command line.

Dim fEnable, I, MsgStr, s

fEnable = False

For I = 0 To Args.Count - 1

 If UCase(Args(I)) = "-ENABLE" Then

 fEnable = True

 Else

 ServerName = Args(I)

 If InStr(UCase(ServerName), "/SERVERS") = 1 Then

 DoOneFolder fEnable, ServerName

 Else

 DoOneServer fEnable, ServerName

 End If

 End If

Next

Sub DoOneServer(fEnable, ServerName)

 Dim MsgStr, s

The Ultimate Guide to MFCOM

33

 Set s = CreateObject("MetaFrameCOM.MetaFrameServer")

 s.Initialize MetaFrameWinSrvObject, ServerName

 If fEnable = True Then

 MsgStr = "Enabling"

 Else

 MsgStr = "Disabling"

 End If

 Wscript.Echo MsgStr & " logon for " & ServerName

 s.WinServerObject.EnableLogon = fEnable

End Sub

Sub DoOneFolder(fEnable, FolderName)

 Dim f, s, Msg

 Msg = "Disabling"

 If fEnable = True Then Msg = "Enabling "

 Set f = CreateObject("MetaFrameCOM.MetaFrameFolder")

 f.InitServerFolder(FolderName)

 For Each s In f.SrvFolder.Servers

 WScript.Echo Msg & " logon on " & s.ServerName

 s.WinServerObject.EnableLogon = fEnable

 Next

End Sub

The above code contains a number of changes. Two subroutines DoOneServer and DoOneFolder are

introduced to process the setting of logon enable flag for a server and for all the servers under a folder.

Also a InStr() function is used to determine if a name given on a command line starts with the substring

“/Servers”. If so, the name is considered a folder and passed in to the DoOneFolder routine as a folder

name. Note that in VB, string indices start at 1, not 0.

2.5.6 Working Script

Now we can do a little bit more tweaks and the following script is a complete working script that allows

the caller to enable or disable logons on some servers, which can be specified explicitly or using server

folders. The folder names and server names can be mixed. The servers specified before the –Enable flag

will have their logons disabled and the servers specified after the –Enable flag will have their logons

enabled. If nothing is specified, the logon for the current server will be disabled. If only the –Enable flag

is specified, the logon for the current server is enabled.

The Ultimate Guide to MFCOM

34

We can remove the Option Explicit attribute because there should be no bugs caused by mixing the use

of the variables. This also saves us a lot of Dim statements.

<package>

 <job id="slon">

 <reference object="MetaFrameCOM.MetaFrameFarm"/>

 <script language="vbscript">

 Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

 f.Initialize MetaFrameWinFarmObject

 If f.WinFarmObject.IsCitrixAdministrator = 0 Then

 WScript.Echo "You are not a Citrix administrator"

 Wscript.Quit 0

 End If

 Set Args = Wscript.Arguments

 Set ws = WScript.CreateObject("WScript.Shell")

 Set pe = ws.Environment("PROCESS")

 ServerName = pe("COMPUTERNAME")

 fEnable = False

 Message = "Disabling"

 If Args.Count = 0 Then

 DoOneServer fEnable, Message, ServerName

 ElseIf Args.Count = 1 And UCase(Args(0)) = "-ENABLE" Then

 DoOneServer True, "Enabling", ServerName

 Else

 For I = 0 To Args.Count - 1

 If UCase(Args(I)) = "-ENABLE" Then

 fEnable = True

 Message = "Enabling "

 Else

 ServerName = Args(I)

 If InStr(UCase(ServerName), "/SERVERS") = 1 Then

 DoOneFolder fEnable, Message, ServerName

 Else

 DoOneServer fEnable, Message, ServerName

 End If

 End If

 Next

 End If

 Sub DoOneServer(fEnable, Message, ServerName)

 Set s = CreateObject("MetaFrameCOM.MetaFrameServer")

The Ultimate Guide to MFCOM

35

 s.Initialize MetaFrameWinSrvObject, ServerName

 Wscript.Echo Message & " logon for " & ServerName

 s.WinServerObject.EnableLogon = fEnable

 End Sub

 Sub DoOneFolder(fEnable, Message, FolderName)

 Set f = CreateObject("MetaFrameCOM, MetaFrameFolder")

 f.InitServerFolder(FolderName)

 For Each s In f.SrvFolder.Servers

 WScript.Echo Msg & " logon on " & s.ServerName

 s.WinServerObject.EnableLogon = fEnable

 Next

 End Sub

 </script>

 </job>

</package>

Not that when a server object is returned from as a result of enumeration from the folder, we don’t

need to initialize the object. The object is already initialized by MFCOM and ready to be used.

3 PRODUCTION SCRIPTS

So far we’ve been able to write some fairly complicated scripts. We’ve learned quite bit about VB and

MFCOM scripting. But if you use the scripts we’ve written so far in a production environment, it’s a good

bet that you’ll receive a lot of customer bug reports from the script users. One of the sources of such

bugs is the lack of error handling in the scripts. So far we’ve assumed that everything works perfectly. In

reality, every line of the code can fail in one way or another.

In this chapter, we’ll first look at how to write code that handles errors gracefully. Then we’ll take a look

at error handling specifically in using MFCOM. We’ll end the chapter with more advanced MFCOM topics

and more scripts.

3.1.1 Error Handling in VB

Error handling in VB is very simple. Similar to the C++/C# try {} catch {} type of construction, in VB, you

can use the On Error statement to catch errors and handle them. But in VBScript, you can only use the

On Error Resume Next statement, which causes the script execution to continue even if there is an error.

Be careful with using this statement because it may make your code very hard to debug since your code

The Ultimate Guide to MFCOM

36

always executes to the end. So during the debugging phase, you shouldn’t use this statement. Even for

production code and the code that seems to be very robust, you shouldn’t use this statement alone.

Instead, try to use the Err variable with the On Error Resume Next. The Err variable is set to an object

after each call. The Err.Number property is the error number. If there is no error, the error number is 0.

Otherwise, it’s an error code.

For more information on error handling in VBScript, refer to this article:

http://www.microsoft.com/technet/scriptcenter/resources/scriptshop/shop1205.mspx#EMC

The following is the code with error handling added to the previous server logon enable code.

<package>

 <job id="slon">

 <reference object="MetaFrameCOM.MetaFrameFarm"/>

 <script language="vbscript">

 On Error Resume Next

 Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

 If Not Err.Number = 0 Then

 WScript.Echo "Failed to create farm object"

 WScript.Quit Err.Number

 End If

 f.Initialize MetaFrameWinFarmObject

 If f.WinFarmObject.IsCitrixAdministrator = 0 Then

 WScript.Echo "You are not a Citrix administrator"

 Wscript.Quit 0

 End If

 Set Args = Wscript.Arguments

 Set ws = WScript.CreateObject("WScript.Shell")

 Set pe = ws.Environment("PROCESS")

 ServerName = pe("COMPUTERNAME")

 fEnable = False

 Message = "Disabling"

 If Args.Count = 0 Then

 DoOneServer fEnable, Message, ServerName

 ElseIf Args.Count = 1 And UCase(Args(0)) = "-ENABLE" Then

 DoOneServer True, "Enabling", ServerName

 Else

 For I = 0 To Args.Count - 1

http://www.microsoft.com/technet/scriptcenter/resources/scriptshop/shop1205.mspx#EMC

The Ultimate Guide to MFCOM

37

 If UCase(Args(I)) = "-ENABLE" Then

 fEnable = True

 Message = "Enabling "

 Else

 ServerName = Args(I)

 If InStr(UCase(ServerName), "/SERVERS") = 1 Then

 DoOneFolder fEnable, Message, ServerName

 Else

 DoOneServer fEnable, Message, ServerName

 End If

 End If

 Next

 End If

 Sub DoOneServer(fEnable, Message, ServerName)

 On Error Resume Next

 Set s = CreateObject("MetaFrameCOM.MetaFrameServer")

 If Not Err.Number = 0 Then

 WScript.Echo "Failed to create server object" & ServerName

 WScript.Quit Err.Number

 End If

 s.Initialize MetaFrameWinSrvObject, ServerName

 If Not Err.Number = 0 Then

 WScript.Echo "Failed to initialize object: " & ServerName

 WScript.Quit Err.Number

 End If

 Wscript.Echo Message & " logon for " & ServerName

 s.WinServerObject.EnableLogon = fEnable

 If Not Err.Number = 0 Then

 WScript.Echo "Failed to enable server logon: " & ServerName

 WScript.Quit Err.Number

 End If

 End Sub

 Sub DoOneFolder(fEnable, Message, FolderName)

 On Error Resume Next

 Set f = CreateObject("MetaFrameCOM, MetaFrameFolder")

 If Not Err.Number = 0 Then

 WScript.Echo "Failed to create folder object: " & FolderName

 WScript.Quit Err.Number

The Ultimate Guide to MFCOM

38

 End If

 f.InitServerFolder(FolderName)

 If Not Err.Number = 0 Then

 WScript.Echo "Failed to initialize folder: " & FolderName

 WScript.Quit Err.Number

 End If

 For Each s In f.SrvFolder.Servers

 WScript.Echo Msg & " logon on " & s.ServerName

 s.WinServerObject.EnableLogon = fEnable

 If Not Err.Number = 0 Then

 WScript.Echo "Failed to set EnableLogon: " & s.ServerName

 WScript.Quit Err.Number

 End If

 Next

 End Sub

 </script>

 </job>

</package>

We can note a few things new in the above script. First, we check error condition almost after every

MFCOM statement. This is expected because any statement can fail. But we don’t check the error

condition for the f.Initialize call and the f.WinServerObject.IsAdministrator calls. We’re using some

MFCOM internal knowledge here. The farm initialization call almost never fails. The IsAdministrator call

also never fails. We have designed it that way so that you can always check if you are an administrator.

When something is wrong, this call simply returns FALSE.

To ensure that the check on Err.Number is executed, the “On Error Resume Next” statement must be

used. Otherwise the statement that fails throws an exception and causes the entire script to fail.

3.1.2 MFCOM Error Codes

Most of the time, MFCOM returns the error code 2147500037, which is 0x80004005 in hex and defined

as E_FAIL in COM. This is a generic error code that doesn’t really tell you anything. MFCOM is not great

at reporting errors. Besides this generic E_FAIL error, the other most common error you’ll get is

2147942405 (0x80070005), which is E_ACCESSDENIED in COM land. You get this error because you don’t

have sufficient permission to access MFCOM. There can be many reasons that cause this error. The

following is a short list.

The Ultimate Guide to MFCOM

39

1. You are not a Citrix administrator. All MFCOM calls can only be accessed by Citrix

administrators. Even if you are an administrator, your permission may be limited to only certain

calls.

2. You are not configured as a DCOM user in Windows. On the recent Windows platforms, DCOM

users must be explicitly configured.

3. If you are remotely connected to MFCOM, your client machine must have the DCOM

impersonation level set to “impersonate”. The default setting on a Windows XP is “identify”.

4. You are trying to connect to MFCOM through a firewall. DCOM or RPC in general doesn’t work

well through firewall and not recommended by Microsoft.

You may receive some other weird error codes if you touch certain part of MFCOM. These errors are not

standard COM errors. These errors start with 2147746392 (0x80040258). Here is some of the common

error codes defined only in MFCOM. There may be other errors greater than 80040258 returned.

Error code in hex Meaning

80040259 Enumeration is out of bounds, or you’re trying to access an array with an index
that is out of array bounds.

80040267 An object can’t be found in IMA data store. For example, a server object is not
found. This may indicate a corrupted data store.

80040258 An object not found in IMA data store. For example, you are trying to load the
data for an application that has been deleted.

3.2 ADVANCED MFCOM SCRIPTS

We’ll look at how to use some of the advanced COM, script, and MFCOM features and techniques to

write more complicated scripts for environments and tasks that demand such types of scripts.

3.2.1 Multi-farm Management

Being able to manage multiple farms simultaneously is one of the most frequently asked questions

among MFCOM users. Many CPS deployments have multiple farms set up. One of the MFCOM

customers that have found a creative use of MFCOM is the Citrix IT department itself. The IT team

maintains several Presentation Server farms. Some of the farms are updated very frequently, sometimes

just a few days from one another. The frequent install of new builds is not typical for other customers.

But the Citrix IT team wants to always use absolutely the latest Presentation Server builds under

development. We want to use our products months before they are shipped and we want to use them

in real environments. To support the migration of farms of such high frequency, it is impossible to

configure the farms using manual tools such as the CMC or AMC. There are too many details that need

to be duplicated on a new farm.

The Ultimate Guide to MFCOM

40

So the Citrix IT team wrote a MFCOM script that basically transport all the settings from an existing farm

to a new farm, which has the most recent Presentation Server build installed. The migration consists

mostly of re-creating published applications, which are in at least dozens, in the new farm. The

published applications need to be created with the correct server, user, and other configurations. Such a

migration will be very error prone if it is done manually. It is also very tedious for any administrator to

support almost weekly re-creation of the farms. With a simple MFCOM script that utilizes the multi-farm

management capability, the migration has been far easier.

To a MFCOM client, the MFCOM server that it connects to represents an access point to the farm, to

which the MFCOM server belongs. A farm needs only to provide one access point to a MFCOM client.

Multi-farm management using MFCOM is accomplished by simultaneously connecting to two or more

servers from different farms at the same time. The following code is a simple VB script that prints out

the name of the farms, assuming “server1” is a server that belongs to “farm1” and “server2” is a server

from “farm2”.

<package>

 <job id="mfmgmt">

 <reference object="MetaFrameCOM.MetaFrameFarm"/>

 <script language="vbscript">

 Set f1 = CreateObject("MetaFrameCOM.MetaFrameFarm", "Server1")

 f1.Initialize MetaFrameWinFarmObject

 WScript.Echo f1.FarmName

 Set f2 = CreateObject("MetaFrameCOM.MetaFrameFarm", "Server2")

 f2.Initialize MetaFrameWinFarmObject

 WScript.Echo f2.FarmName

 </script>

 </job>

</package>

The highlighted text shows the additional parameter passed to the CreateObject function. If the

additional server name is not specified, CreateObject connects to the local server or a server specified as

the default remote COM server for the object. The default remote COM server is specified in the system

registry. Information on how that process works is documented in the section on mfreg.exe.

All other MFCOM objects can be created similarly by providing a server name parameter to

CreateObject. Those objects returned as a result of enumeration apparently belong to the same server

as the object, from which the enumeration is initiated. Therefore it is possible to maintain objects from

different farms at the same time for all MFCOM operations.

The Ultimate Guide to MFCOM

41

It must be noted that the following cautions should be taken in using multiple MFCOM servers from a

remote MFCOM client at the same time.

1. The MFCOM client and the servers, to which it connects, should trust the same account

authorities so that the same user credential can be used to access the farms at the same time. It

will be very difficult to use different user credentials to connect to different servers, although it

is possible and easier to do in C++.

2. The same credential that is used to access the servers must also be the Citrix administrator on

all the farms.

3. The versions of Presentation Server (thus MFCOM as well) installed on all the farms should be

the same. The MFCOM client should be registered with the same version of MFREG.EXE. In case

the versions of the Presentation Server installation on the farms are different, the lowest

version of the MFREG.EXE should be used and registered on the MFCOM client. The code that

runs on the client should also use only the lowest version of the MFCOM calls.

4. It is allowable to connect to another remote MFCOM server from a Presentation Server. But this

is not recommended. This works if all the versions of the Presentation Server installations are

the same. But if the remote server version is lower than the local server version, only the calls

that are available on the lower version should be used.

3.2.2 OBDA

OBDA stands for object-based delegated administration, which implies that administration of

Presentation Server farm can be delegated to other partial administrators based on their access rights to

certain objects. This capability allows certain administrators to be configured to do only some specific

tasks. Other tasks that are not assigned to the administrators are not accessible to those administrators.

This is a great feature. MFCOM fully supports this feature in all aspects.

In terms of OBDA exposure in MFCOM, the following summarizes the functionality that can be accessed

through MFCOM.

1. MFCOM knows the identity of the user that is accessing its objects, interfaces, properties, and

methods and makes only the calls that are accessible as defined by the OBDA rules available to

the user. If the user accesses the calls that are not allowed to the user, “access denied” is

returned as an error for such calls.

2. MFCOM provides calls to allow the current user to query its own access rights. This allows the

script writer to write scripts that will work for users with different privileges with proper

handling of the error conditions.

3. A fully privileged administrator or a partially privileged administrator with sufficient rights is able

to manage the access privileges of other administrators using MFCOM.

The Ultimate Guide to MFCOM

42

Currently, the basic object unit of delegated administration is a server or application folder, nothing

else. To assign privileges on certain published applications or servers, the applications or servers must

be grouped under folders in ways that will make the administration delegation possible.

OBDA is not defined for other objects such as session, policy and load evaluators, although some

privileges are defined on a global basis for such objects.

The following script is an example that prints out the privileges available to the user that runs the script.

Note that the user can be anyone, including one who is not a Citrix administrator. The script can be

modified to a subroutine or a function to be called with every script to ensure that the current user has

sufficient rights to access the rest of the scripts.

<package>

 <job id="myprivs">

 <reference object="MetaFrameCOM.MetaFrameFarm"/>

 <script language="vbscript">

 Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

 f.Initialize MetaFrameWinFarmObject

 If f.WinFarmObject2.IsCitrixAdministrator = 0 Then

 WScript.Echo "Sorry, you are not a Citrix administrator"

 WScript.Quit

 End If

 WScript.Echo "Congratulations, you are a Citrix administrator"

 Set ws = CreateObject("WScript.Shell")

 Set env = ws.Environment("PROCESS")

 ' Create a MetaFrameAdministrator object for the current user

 Set u = CreateObject("MetaFrameCOM.MetaFrameAdministrator")

 u.AAType = MFAccountAuthorityADS

 u.AAName = env("USERDOMAIN")

 u.AccountType = MFAccountDomainUser

 u.AccountName = env("USERNAME")

 WScript.Echo "You have the following privileges"

 For Each p In u.Privileges

 WScript.Echo p

 Next

 </script>

 </job>

</package>

The Ultimate Guide to MFCOM

43

The above script works. But it has a problem. The values printed out are integers. To an end user, it’ll be

very hard to decipher what those integers mean. A more user friendly output is to print out the names

of the privileges. All such privileges are defined in the MFCOM reference guide, thus we can convert the

integer value of a privilege to a string. Since VBScript doesn’t have any concept of type, there is no

better way (at least I’ve not found one) to convert the integer values to strings without using a big array

of strings. The following is the code.

<package>

 <job id="MyPrivs">

 <reference object="MetaFrameCOM.MetaFrameFarm"/>

 <script language="VBScript">

 Dim PrivNames(84)

 PrivNames(0) = "Unknown privilege"

 PrivNames(1) = "Manage applications"

 PrivNames(2) = "View applications"

 PrivNames(3) = "Edit applications"

 PrivNames(4) = "Manage users"

 PrivNames(5) = "View users"

 PrivNames(6) = "Edit users"

 PrivNames(7) = "Manage printers"

 PrivNames(8) = "View printers"

 PrivNames(9) = "Replicate drivers"

 PrivNames(10) = "Edit drivers"

 PrivNames(11) = "Edit printers"

 PrivNames(12) = "Other printer settings"

 PrivNames(13) = "Manage load evaluators"

 PrivNames(14) = "View load evaluators"

 PrivNames(15) = "Edit load evaluators"

 PrivNames(16) = "Assign load evaluators"

 PrivNames(17) = "Manage licenses"

 PrivNames(18) = "View licenses"

 PrivNames(19) = "Assign licenses"

 PrivNames(20) = "Edit licenses"

 PrivNames(21) = "Manage farm"

 PrivNames(22) = "View farm"

 PrivNames(23) = "Manage interoperability"

 PrivNames(24) = "Manage zones"

 PrivNames(25) = "Other farm mangement"

 PrivNames(26) = "Manage sessions"

 PrivNames(27) = "View sessions"

 PrivNames(28) = "Connect to sessions"

 PrivNames(29) = "Send messages"

 PrivNames(30) = "Logoff a session"

The Ultimate Guide to MFCOM

44

 PrivNames(31) = "Disconnect session"

 PrivNames(32) = "Reset session"

 PrivNames(33) = "Terminate process"

 PrivNames(34) = "Manage servers"

 PrivNames(35) = "View server info"

 PrivNames(36) = "Edit SNMP settings"

 PrivNames(37) = "Edit other settings"

 PrivNames(38) = "Remove server"

 PrivNames(39) = "Add server"

 PrivNames(40) = "Installation management"

 PrivNames(41) = "View IMS settings"

 PrivNames(42) = "Edit configurations"

 PrivNames(43) = "Remove packages"

 PrivNames(44) = "Schedule job deletion"

 PrivNames(45) = "Edit packages"

 PrivNames(46) = "Manage resources"

 PrivNames(47) = "View resources"

 PrivNames(48) = "Edit resources"

 PrivNames(49) = "Manage user policies"

 PrivNames(50) = "View user policies"

 PrivNames(51) = "Edit user policies"

 PrivNames(52) = "Manage Citrix admins"

 PrivNames(53) = "View Citrix admins"

 PrivNames(54) = "Log on to admin tool"

 PrivNames(55) = "Manage server folder"

 PrivNames(56) = "Manage license server"

 PrivNames(57) = "Assign applications"

 PrivNames(58) = "Manage RM server"

 PrivNames(59) = "Assign RM applications"

 PrivNames(60) = "Receive RM alerts"

 PrivNames(61) = "Generate current and summary reports"

 PrivNames(62) = "Generate billing reports"

 PrivNames(63) = "Manage RM applications"

 PrivNames(64) = "View RM apps"

 PrivNames(65) = "Edit RM apps"

 PrivNames(66) = "Install and uninstall packages"

 PrivNames(67) = "Log on to WI console"

 PrivNames(68) = "Isolation Environment Management"

 PrivNames(69) = "Manage and Edit IE"

 PrivNames(70) = "View IE"

 PrivNames(71) = "Monitoring and Alerting"

 PrivNames(72) = "View KC config"

 PrivNames(73) = "Edit KC config"

 PrivNames(74) = "View KC alert config"

 PrivNames(75) = "Edit KC alert config"

 PrivNames(76) = "Receive RM App alerts"

 PrivNames(77) = "View RM Information for Servers"

The Ultimate Guide to MFCOM

45

 PrivNames(78) = "Edit RM Information of Servers"

 PrivNames(79) = "RM SMS and Email Notifications"

 PrivNames(80) = "View Monitoring Profiles"

 PrivNames(81) = "Edit Monitoring Profiles"

 PrivNames(82) = "Edit configuration logging"

 PrivNames(83) = "Assign Monitoring Profile to servers"

 PrivNames(84) = "Kill process for an application"

 Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

 f.Initialize MetaFrameWinFarmObject

 If f.WinFarmObject2.IsCitrixAdministrator = 0 Then

 WScript.Echo "Sorry, you are not a Citrix administrator"

 End If

 WScript.Echo "Congratulations, you are a Citrix administrator"

 Set ws = CreateObject("WScript.Shell")

 Set env = ws.Environment("PROCESS")

 Set u = CreateObject("MetaFrameCOM.MetaFrameAdministrator")

 u.AAType = MFAccountAuthorityADS

 u.AAName = env("USERDOMAIN")

 u.AccountType = MFAccountDomainUser

 u.AccountName = env("USERNAME")

 WScript.Echo "You have the following privileges"

 For Each p In u.Privileges

 If p < 85 Then

 WScript.Echo " " & PrivNames(p)

 Else

 WScript.Echo "****New Privilege, add it to the array"

 End If

 Next

 </script>

 </job>

</package>

Now the privilege names are displayed, instead of the integers. The code requires updates if new

privileges are defined. Fortunately, that doesn’t appear to be needed for sometime because the

privileges listed above is based on the CPS 4.5. The next release of CPS will be many months away.

Note that some of the privileges have been deprecated on some versions of CPS. If you run the code on

a CPS 4.5 server as a full administrator, you may get a set of privileges that are different from the set of

privileges available on an earlier version of CPS.

The Ultimate Guide to MFCOM

46

3.2.3 Helpdesk Application

One of the applications of OBDA is that you can create many administrators that do only one or two

tasks. These administrators are not full administrators because they don’t need to manage other aspects

of a Presentation Server farm. A typical application of such a strategy is the helpdesk support personnel.

These support staff don’t usually need or should have the capability to publish applications or set farm

wide properties. But they may need to be capable of logging off or resetting user sessions.

In such a case, a user group for the helpdesk support staff may be created. This user group then can be

defined as a partial Citrix administrator with only the privileges to logoff or reset user sessions. Scripts

can be written to perform session log off or reset. The scripts can be used by the support personnel.

3.2.4 Office Integration

Generating reports is one of the most common applications of MFCOM. In addition to using standalone

scripts to create reports, an administrator can also create embedded macros for Microsoft Office

applications to make the report generation easier to use and better presented. The following is a macro

that creates an Excel spreadsheet. This macro is included in the userload.xls file, which is one of the

MPSSDK script examples.

Option Explicit

Private Sub Workbook_Open()

 Dim theFarm As MetaFrameFarm

 Dim aSession As MetaFrameSession

 Dim SessionState(10) As String

 Dim intResult, intActiveSessions, intDisconnSessions As Integer

 Dim intUniqueUsers, intSessions As Integer

 Dim strTime As String

 Dim timeNow As Date

 Dim WB As Workbook

 Dim WSAll, WSSessions, WSActive, WSDisconn, WSUsers As Worksheet

 Dim intRowNum As Integer

 ' Get current date and time and store in "file name friendly" format.

 timeNow = Now()

 strTime = Month(timeNow) & "-" & Day(timeNow) & "-" & Year(timeNow) & _

 "-" & Hour(timeNow) & "-" & Minute(timeNow)

 ' Create MetaFrameFarm object

 Set theFarm = CreateObject("MetaFrameCOM.MetaFrameFarm")

 If Err.Number <> 0 Then

The Ultimate Guide to MFCOM

47

 MsgBox "Can't create MetaFrameFarm object" & _

 "(" & Err.Number & ") " & Err.Description

 End

 End If

 ' Initialize the farm object.

 theFarm.Initialize (MetaFrameWinFarmObject)

 If Err.Number <> 0 Then

 MsgBox "Can't Initialize MetaFrameFarm object" & _

 "(" & Err.Number & ") " & Err.Description

 End

 End If

 ' Are you Citrix Administrator?

 If theFarm.WinFarmObject.IsCitrixAdministrator = 0 Then

 MsgBox "You must be a Citrix administrator to run this application"

 End

 End If

 SessionState(0) = "Unknown"

 SessionState(1) = "Connected"

 SessionState(2) = "Active"

 SessionState(3) = "Connecting"

 SessionState(4) = "Shadowing"

 SessionState(5) = "Disconnected"

 SessionState(6) = "Idle"

 SessionState(7) = "Listening"

 SessionState(8) = "Resetting"

 SessionState(9) = "Down"

 SessionState(10) = "Init"

 ' We want 5 worksheets in a new workbook

 Application.SheetsInNewWorkbook = 5

 Set WB = Application.Workbooks.Add

 ' Rename first Worksheet to All

 Set WSAll = WB.Worksheets(1)

 WSAll.Name = "All"

 ' Rename second worksheet to Sessions for displaying unique sessions.

 Set WSSessions = WB.Worksheets(2)

 WSSessions.Name = "Sessions"

 ' Rename third worksheet to Active for displaying active sessions.

 Set WSActive = WB.Worksheets(3)

 WSActive.Name = "Active"

The Ultimate Guide to MFCOM

48

 ' Rename fourth worksheet Disconn for displaying disconnected sessions.

 Set WSDisconn = WB.Worksheets(4)

 WSDisconn.Name = "Disconn"

 ' Rename fifth worksheet Users for displaying distinct users only.

 Set WSUsers = WB.Worksheets(5)

 WSUsers.Name = "Users"

 'Application.Visible = True

 ' Write Header to Excel Worksheet

 WSAll.Cells(1, 1).Value = "User"

 WSAll.Cells(1, 2).Value = "ServerName"

 WSAll.Cells(1, 3).Value = "SessionID"

 WSAll.Cells(1, 4).Value = "SessionName"

 WSAll.Cells(1, 5).Value = "ClientName"

 WSAll.Cells(1, 6).Value = "AppName"

 WSAll.Cells(1, 7).Value = "SessionState"

 ' Set current row to header row

 intRowNum = 1

 For Each aSession In theFarm.Sessions

 If Err.Number <> 0 Then

 MsgBox "Can't enumerate sessions" & vbCrLf & "(" & _

 Err.Number & ") " & Err.Description

 End

 End If

 intRowNum = intRowNum + 1

 WSAll.Cells(intRowNum, 1).Value = aSession.UserName

 WSAll.Cells(intRowNum, 2).Value = aSession.ServerName

 WSAll.Cells(intRowNum, 3).Value = aSession.SessionID

 WSAll.Cells(intRowNum, 4).Value = aSession.SessionName

 WSAll.Cells(intRowNum, 5).Value = aSession.ClientName

 WSAll.Cells(intRowNum, 6).Value = aSession.AppName

 WSAll.Cells(intRowNum, 7).Value = SessionState(aSession.SessionState)

 Next

 ' Sort worksheet

 WSAll.Columns("A:G").Sort WSAll.Columns("A"), xlAscending, _

 WSAll.Columns("B"), , xlAscending, WSAll.Columns("C"), _

 xlAscending, xlYes

 ' Autoformat to change column widths

 WSAll.Columns("A:G").AutoFit

 ' Change header to bold font

The Ultimate Guide to MFCOM

49

 WSAll.Range("A1:G1").Font.Bold = True

 ' Filter out duplicate records

 ' expression.AdvancedFilter(Action, CriteriaRange, CopyToRange, Unique)

 WSAll.Columns("A:G").AdvancedFilter xlFilterInPlace, , , True

 ' Copy WSAll to WSSessions

 WSAll.Columns("A:G").Copy (WSSessions.Cells(1, 1))

 WSSessions.Columns("A:G").AutoFit

 ' Get number of Sessions

 intSessions = Application.CountA(WSSessions.Range("A:A")) - 1

 ' Filter Sessions Worksheet for Active sessions only.

 WSSessions.Range("A1").AutoFilter 7, "Active"

 ' Copy WSSessions to WSActive

 WSSessions.Columns("A:G").Copy (WSActive.Cells(1, 1))

 WSActive.Columns("A:G").AutoFit

 ' Get number of Active Sessions

 intActiveSessions = Application.CountA(WSActive.Range("A:A")) - 1

 ' Show all data in WSSessions

 WSSessions.ShowAllData

 WSSessions.AutoFilterMode = False

 ' Filter Sessions Worksheet for Disconnected sessions only.

 WSSessions.Range("A1").AutoFilter 7, "Disconnected"

 ' Copy WSSessions to WSDisconn

 WSSessions.Columns("A:G").Copy (WSDisconn.Cells(1, 1))

 WSDisconn.Columns("A:G").AutoFit

 ' Get number of Disconnected Sessions

 intDisconnSessions = Application.CountA(WSDisconn.Range("A:A")) - 1

 ' Show all data in WSSessions

 WSSessions.ShowAllData

 WSSessions.AutoFilterMode = False

 ' Filter WSActive so only unique users are shown

 WSActive.Columns("A").AdvancedFilter xlFilterInPlace, _

 WSActive.Columns("A"), , True

 ' Copy unique users from WSActive to WSUsers

 ' We only copy first row

The Ultimate Guide to MFCOM

50

 WSActive.Columns("A").Copy (WSUsers.Cells(1, 1))

 WSUsers.Columns("A").AutoFit

 ' Get number of unique users

 intUniqueUsers = Application.CountA(WSUsers.Range("A:A")) - 1

 WB.SaveAs "UserLoad-" & theFarm.FarmName & "-" & strTime & ".xls"

 MsgBox theFarm.FarmName & vbCrLf & _

 timeNow & vbCrLf & vbCrLf & _

 "Total Sessions: " & vbTab & intSessions & vbCrLf & _

 "Active: " & vbTab & vbTab & intActiveSessions & vbCrLf & _

 "Disconnected: " & vbTab & intDisconnSessions & vbCrLf & _

 "Users: " & vbTab & vbTab & intUniqueUsers

End Sub

Creating a macro requires some basic Office programming skills. For example, the above macro gets

executed when the script file is opened, thus the script is written in the function WorkBook_Open().

Once the macro is enabled and the userload.xls file is opened, the script gets executed, which creates a

spreadsheet and populates the cells with session data.

If you know more Office programming, you can avoid using macros and write an add-in to provide live

feed to your spreadsheet.

3.3 ANOTHER SCRIPT

It’s time to do another script. We’ve gone over some pretty good theories and insides on MFCOM, now

we need to use what we’ve learned to practice. In this section, we develop a script that edits the server

list of a published application.

3.3.1 Script Specification

We start by defining exactly what this script should do. A good way to describe a script design is to write

out the command line and list out all the command line combinations. Once we have those usage

scenarios defined, we can refine the design to make the command line design logical and easy to use.

The following is a list of tasks. We assume that the application is a required parameter.

1. Add the current server to the published application.
2. Add one or more servers to the application.
3. Add servers from a folder to the application
4. Remove the current server from the application.

The Ultimate Guide to MFCOM

51

5. Remove one or more servers from the application.
6. Remove servers under a folder from the application.
7. For all servers added to the application, allow custom command line and working directory for

each server.

With the above requirements, we can attempt to describe the command line using BNF notation,

assume the name of the script is “appsrvs.wsf”.

Appsrvs AppName {[-a|-d] [ServerName|FolderName[,CmdLine[,WorkDir]}

This should satisfy the above requirements. The curly brackets {} indicates that the number of items

inside it can be zero or more. The square brackets [] indicates that the items inside it are optional. In our

definition, the following command expressions correspond to the requirements listed above.

1. appsrvs notepad or appsrvs -a
2. appsrvs notepad –a Server1 Server2 Server3

3. appsrvs notepad –a /Servers/Folder1
4. appsrvs notepad –d
5. appsrvs notepad –d Server1 Server2 Server3

6. appsrvs notepad –d /Servers/Folder1
7. appsrvs notepad –a ―Srv1,notepad.exe,C:\temp‖ ―Server2,calc.exe‖

8. appsrvs notepad –a ―,notepad.exe‖
9. appsrvs notepad –a ―,,c:\temp‖

Note that when command lines and/or working directories are specified for a server, the triplets must

be specified in one string, which should be quoted in most cases.

Our definition also allows us to specify –a and –d on the same line multiple times.

The only required parameter is the name of the published application, which can be the browser name

or a distinguished name like /Applications/Folder1/Notepad.

In parsing the command line arguments, we need to take into account the cases where the server name

and the initial command line may not be specified. These are shown above as item 8 and 9.

3.3.2 MFCOM Objects

Now we need to have a high level estimate of the MFCOM objects that we need to use. There is no

question that the MetaFrameApplication is needed because we need to modify the properties of an

application. It’s doubtful that we’ll need to use the MetaFrameServer object much because we don’t

need to access server properties. But definitely we’ll need to enumerate servers from a folder. So we

need to use the MetaFrameFolder property.

The Ultimate Guide to MFCOM

52

To add command line and working directory to an application, we need to use a specialized object

MetaFrameAppSrvBinding. It doesn’t appear that any other objects are needed.

We go through this exercise so that when we need to look at the MFCOM reference guide, we have a

good idea about from where we should look at things. The reference is huge. For someone who is very

familiar with MFCOM, explicitly listing out the objects here is apparently not necessary.

We also need to use the MetaFrameFarm object to check the user privileges to ensure that the user has

the necessary permission to perform the operations.

3.3.3 Command Line Parsing

The first step is to construct the major components of the code. Here are a few things that we need to

do:

1. Parse the command line, reject illegal parameters.
2. Check to ensure that the user has sufficient privileges to change a published application.
3. Load the published application object and modify its server list.

Here is the command line parsing code.

Set Args = Wscript.Arguments

Set ws = WScript.CreateObject("WScript.Shell")

Set env = ws.Environment("PROCESS")

ServerName = env("COMPUTERNAME")

bAdd = True

CmdLine = ""

WorkDir = ""

If Args.Count = 0 Then

 WScript.Echo "Usage: AppName [-a|-d] {[Server,CmdLine,WorkDir]}"

 WScript.Quit 1

End If

AppName = Args(0)

For I = 2 To Args.Count

 If Args(I - 1) = "-a" Then

 bAdd = True

 ElseIf Args(I - 1) = "-d" Then

 bAdd = False

 Else

 arg = Args(I - 1)

 ServerName = arg

The Ultimate Guide to MFCOM

53

 c1 = InStr(arg, ",")

 c2 = InStr(c1 + 1, arg, ",")

 If c1 > 0 Then

 ServerName = Mid(arg, 1, c1 - 1)

 CmdLine = Mid(arg, c1 + 1)

 If c2 > 0 Then

 CmdLine = Mid(arg, c1 + 1, c2 - c1 - 1)

 WorkDir = Mid(arg, c2 + 1)

 End If

 End If

 End If

 ServerName = env("COMPUTERNAME")

CmdLine = ""

WorkDir = ""

Next

Here the default server name is always the current server. The custom command line and working

directory for the published application is empty. In the loop, we should call a function that adds or

deletes the server to or from the published application.

3.3.4 Check User Privileges

Next, we need to check the current user permission to make sure that the user has sufficient privileges

to do the job. To do this, we refine the code that previously listed the privileges of the current user. We

don’t need to print out the privileges, but rather, we just need to check certain privileges required for

publishing and modifying applications. If there is no duplication in the array of privileges returned for

the current user, we can simply count the number of required privileges. The code is below.

Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

f.Initialize MetaFrameWinFarmObject

If f.WinFarmObject2.IsCitrixAdministrator = 0 Then

 WScript.Echo "Sorry, you are not a Citrix administrator"

End If

Set ws = CreateObject("WScript.Shell")

Set env = ws.Environment("VOLATILE")

Set u = CreateObject("MetaFrameCOM.MetaFrameAdministrator")

u.AAType = MFAccountAuthorityADS

u.AAName = env("USERDOMAIN")

u.AccountType = MFAccountDomainUser

u.AccountName = env("USERNAME")

MyPrivs = 0

The Ultimate Guide to MFCOM

54

For Each p In u.Privileges

 If p = MFPrivilegeViewApps Or _

 p = MFPrivilegeEditApps Or _

 p = MFPrivilegeAssignApps Then

 MyPrivs = MyPrivs + 1

 End If

Next

If MyPrivs < 3 Then

 WScript.Echo "You don't have sufficient privileges"

 WScript.Quit 2

End If

There is an alternative method to check if the current user has certain privileges. This is left to the

reader as an exercise.

3.3.5 Edit Application’s Server list

Next, we need to write the code that does the real job, which is to modify the published application’s

server list. First, we need to load the application data from the IMA data store to a

MetaFrameApplication object. This is accomplished by the following code.

Set app = CreateObject("MetaFrameCOM.MetaFrameApplication")

app.Initialize2 Args(0)

app.LoadData True

Note that although the documentation says that the argument to the method Initialize2 must be the

application’s distinguished name, actually it can be also a browser name.

The code to remove a server from a published application is below.

app.RemoveServer ServerName

The code to add a server to a published application requires us to create a MetaFrameAppSrvBinding

object.

Set binding = CreateObject(―MetaFrameCOM.MetaFrameAppSrvBinding‖)

binding.InitializeByName ServerName, Args(0)

binding.InitialCommandLine = CmdLine

binding.WorkingDirectory = WorkDir

The Ultimate Guide to MFCOM

55

app.AddServer binding

Finally, we need to remember to save the changes to the application object. The method to use is

SaveData.

Putting everything together, the following is the complete code to edit the server list of a published

application. For reasons we will see later, we use a subroutine to do this.

Sub EditAppServers(app, bAdd, ServerName, AppName, CmdLine, WorkDir)

 If bAdd = True Then

 Set binding = CreateObject(―MetaFrameCOM.MetaFrameAppSrvBinding‖)

 binding.InitializeByName ServerName, Args(0)

 binding.InitialCommandLine = CmdLine

 binding.WorkingDirectory = WorkDir

 app.AddServer binding

 Else

 app.RemoveServer ServerName

 End If

End Sub

3.3.6 The Complete Code

At last, the complete code is below. You should add the XML tags (<package>, <job>, <reference>, and

<script>) to the code to convert it to a .wsf file.

Set Args = Wscript.Arguments

Set ws = WScript.CreateObject("WScript.Shell")

Set env = ws.Environment("PROCESS")

ServerName = env("COMPUTERNAME")

bAdd = True

CmdLine = ""

WorkDir = ""

If Args.Count = 0 Then

 WScript.Echo "Usage: AppName [-a|-d] {[Server,CmdLine,WorkDir]}"

 WScript.Quit 1

End If

Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

f.Initialize MetaFrameWinFarmObject

If f.WinFarmObject2.IsCitrixAdministrator = 0 Then

The Ultimate Guide to MFCOM

56

 WScript.Echo "Sorry, you are not a Citrix administrator"

End If

Set env = ws.Environment("PROCESS")

Set u = CreateObject("MetaFrameCOM.MetaFrameAdministrator")

u.AAType = MFAccountAuthorityADS

u.AAName = env("USERDOMAIN")

u.AccountType = MFAccountDomainUser

u.AccountName = env("USERNAME")

MyPrivs = 0

For Each p In u.Privileges

 If p = MFPrivilegeViewApps Or _

 p = MFPrivilegeEditApps Or _

 p = MFPrivilegeAssignApps Then

 MyPrivs = MyPrivs + 1

 End If

Next

If MyPrivs < 3 Then

 WScript.Echo "You don't have sufficient privileges"

 WScript.Quit 2

End If

AppName = Args(0)

Set app = CreateObject("MetaFrameCOM.MetaFrameApplication")

app.Initialize2 AppName

app.LoadData True

For I = 2 To Args.Count

 If Args(I - 1) = "-a" Then

 bAdd = True

 ElseIf Args(I - 1) = "-d" Then

 bAdd = False

 Else

 arg = Args(I - 1)

 ServerName = arg

 c1 = InStr(arg, ",")

 c2 = InStr(c1 + 1, arg, ",")

 If c1 > 0 Then

 ServerName = Mid(arg, 1, c1 - 1)

 CmdLine = Mid(arg, c1 + 1)

 If c2 > 0 Then

 CmdLine = Mid(arg, c1 + 1, c2 - c1 - 1)

 WorkDir = Mid(arg, c2 + 1)

 End If

 End If

The Ultimate Guide to MFCOM

57

 EditAppServers app, bAdd, ServerName, AppName, CmdLine, WorkDir

 End If

 ServerName = env("COMPUTERNAME")

CmdLine = ""

WorkDir = ""

Next

app.SaveData

Sub EditAppServers(app, bAdd, ServerName, AppName, CmdLine, WorkDir)

 If bAdd = True Then

 Set binding = CreateObject("MetaFrameCOM.MetaFrameAppSrvBinding")

 binding.InitializeByName ServerName, Args(0)

 binding.InitialCommandLine = CmdLine

 binding.WorkingDirectory = WorkDir

 app.AddServer binding

 Else

 app.RemoveServer ServerName

 End If

End Sub

Now you should understand why we have used a subroutine to do the server list change. The subroutine

can be called inside the loop on the argument list. Also, the data load and save operations are done only

once for the application.

The code should be enhanced to include extensive error checking at every MFCOM call to make sure

that all possible error conditions are properly handled.

The script doesn’t handle the case when the server is a server folder. It should be easy to change the

code to support server folders. This is left to the reader as an exercise.

3.4 LOAD EVALUATOR OPERATIONS

Following the same model as the previous script to edit published application’s server list, we can try to

write a similar script that handles most of the load evaluator related operations. For example, create,

modify, and delete load evaluators. In addition, we can manage the attachment of the load evaluators

to servers and applications.

3.4.1 Task List

Let’s first start with fully spelling out what we want to do.

The Ultimate Guide to MFCOM

58

1. Create a load evaluator with some pre-defined rules.
2. Modify a load evaluator, including load evaluator rules.
3. Delete a load evaluator.
4. Attach a load evaluator to one or more servers.

3.4.2 Command Line Specification

The command line specification is a little harder to define than the previous examples. If you look at the

task list carefully, you can notice that we now have to deal with two sets of parameters of variable

length. One is the list of rules and the other is a list of servers. As usual, we use flags to help us to ease

the parsing of the command line parameters.

Assume the name of the script is “leedit.wsf”.

leedit.wsf [-c|-d] LEName [-e Description] {+|-Rule} {Servers}

The rules are specified using the integer number of a rule. Each rule is prefixed with a + or – sign. If the

rule is prefixed with a plus (+) sign, the rule is to be added to the load evaluator. If the rule is prefixed

with a – sign, the rule is to be removed from the load evaluator. The rule is specified using the integer

value of the equivalent rule name, which is defined as MetaFrameLMRuleType. When a rule is to be

added, the data for the rule follows the rule type separated with a comma. If needed the whole rule

should be enclosed in a pair of quotes.

The servers are specified using server names. Server folder names should also be accepted.

The above listed tasks can be written in the following commands.

1. leedit.wsf –c ―new LE‖ –e ―A new LE‖ +1/80 this command creates a new load
evaluator and add the CPU utilization rule (rule id 1) with value of 80% CPU utilization.

2. leedit.wsf –d ―old LE‖ this command deletes an existing load evaluator.
3. leedit.wsf ―existing LE‖ -1 +3/70 Server1 /Servers/Folder1 this

command modifies an existing load evaluator by remove rule id 1 (CPU utilization) and adding
rule 3 (memory utilization) with memory usage set to 70%. It also attaches the load evaluator to
Server1 and all the servers under /Servers/Folder1.

4. leedit.wsf ―existing LE‖ –e ―new description‖ this command modifies the
description of an existing load evaluator.

Note the fine details of this command. If the load evaluator name is not preceded by a –c or –d flag, it

means that the load evaluator is to be modified. The load evaluator description is always preceded by

the –e flag. This is to ensure that the description won’t be mistaken as a server name. Rules are always

integers prefixed by a + or – sign. Each rule specification consists of a rule ID and up to two additional

The Ultimate Guide to MFCOM

59

parameters separated by forward slashes (/). The rest of the command line is server or server folder

names.

3.4.3 Command Line Parsing

The following code parses the command line.

Sub PrintUsage()

 WScript.Echo "Usage: [-c|-d] lename [-e description] " & _

 "{+|-RuleID[/Param1[/Param2]]} {Servers}"

End Sub

Set Args = Wscript.Arguments

bCreate = FALSE

bDelete = FALSE

LEDesc = ""

If Args.Count = 0 Then

 PrintUsage()

 WScript.Quit 1

End If

If Args(0) = "-c" Or Args(0) = "-d" Then

 If Args.Count = 1 Then

 PrintUsage()

 WScript.Quit 2

 End If

 LEName = Args(1)

 iNext = 2

 If Args(0) = "-c" Then

 bCreate = True

 Else

 bDelete = True

 End If

Else

 LEName = Args(0)

 iNext = 1

End If

If Args.Count >= iNext + 1 Then

 If Args(iNext) = "-e" Then

 iNext = iNext + 1

The Ultimate Guide to MFCOM

60

 If iNext = Args.Count Then

 PrintUsage()

 WScript.Quit 4

 End If

 LEDesc = Args(iNext)

 iNext = iNext + 1

 End If

 For I = iNext To Args.Count - 1

 If Not IsRuleSpec(Args(I)) Then

 WScript.Echo "Attach server " & Args(I)

 End If

 Next

End If

Function IsRuleSpec(s)

 bAdd = True

 If Mid(s, 1, 1) = "+" Then

 WScript.Echo "Add rule:"

 ElseIf Mid(s, 1, 1) = "-" Then

 WScript.Echo "Remove rule:"

 bAdd = False

 Else

 IsRuleSpec = False

 Exit Function

 End If

 RuleID = 0

 Param1 = ""

 Param2 = ""

 If IsNumeric(Mid(s, 2)) Then

 RuleID = CInt(Mid(s, 2))

 WScript.Echo " " & RuleID

 IsRuleSpec = True

 Exit Function

 End If

 p1 = InStr(2, s, "/")

 If p1 > 0 Then

 If Not IsNumeric(Mid(s, 2, p1 - 2)) Then

 IsRuleSpec = False

 Exit Function

 End If

 RuleID = CInt(Mid(s, 2, p1 - 2))

 p2 = InStr(p1 + 1, s, "/")

The Ultimate Guide to MFCOM

61

 If p2 > 0 Then

 Param1 = Mid(s, p1 + 1, p2 - p1 - 1)

 Param2 = Mid(s, p2 + 1)

 Else

 Param1 = Mid(s, p1 + 1)

 End If

 End If

 IsRuleSpec = True

End Function

We use a simple subroutine PrintUsage() to print out the usage because it may be printed from several

places. The function IsRuleSpec() returns true if the argument is a rule specification. In the next sections,

we’ll expand the above code so that it also implements the actual operations on the specified load

evaluator.

3.4.4 Create a Load Evaluator

To create a load evaluator, we need to do the following:

1. Create an empty MetaFrameLoadEvaluator object.
2. Initialize the load evaluator name and description.
3. Define at least one rule for the load evaluator.
4. Save the load evaluator data.

The code that does the above is below.

Set LEObj = CreateObject("MetaFrameCOM.MetaFrameLoadEvaluator")

LEObj.LEName = LEName

LEObj.Description = LEDesc

Set LERules = CreateObject("MetaFrameCOM.MetaFrameLMRules")

LEObj.Rules = LERules

LEObj.SaveData

Function AddOneRule(ByRef LERules, RuleID, Param1, Param2)

 Set OneRule = CreateObject("MetaFrameCOM.MetaFrameLMRule")

 OneRule.RuleType = RuleID

The Ultimate Guide to MFCOM

62

 If RuleID = LMRuleCPU Or RuleID = LMRuleContext Or _

 RuleID = LMRuleMemory Or RuleID = LMRulePageFault Or _

 RuleID = LMRulePageSwap Or RuleID = LMRuleDiskIO Or _

 RuleID = LMRuleDiskOp Then

 OneRule.LWM = CInt(Param1)

 OneRule.HWM = CInt(Param2)

 ElseIf RuleID = LMRuleAppUser Then

 OneRule.LWM = CInt(Param1)

 OneRule.AppDN = Param2

 Else

 WScript.Echo "Invalid load evaluator rule type " & RuleID

 AddOneRule = False

 Exit Function

 End If

 LERules.AddRule OneRule

 AddOneRule = True

End Function

In the above code, we define a function to add a rule to a load evaluator. The function will be called on

each rule parameter in a loop.

Note that we explicitly left out the LMRuleSchedule rule. Currently because of the type of this

property is defined, the property is not accessible to VBScript, although it’s accessible to VB.

The case for IP range rule, which is new in CPS 4.5, is also omitted. Interested readers may add the code

for adding a new IP range rule.

3.4.5 Delete a Load Evaluator

The code to delete a load evaluator is relatively simple.

Set LEObj = CreateObject("MetaFrameCOM.MetaFrameLoadEvaluator")

LEObj.LEName = LEName

LEObj.LoadData True

LEObj.DeleteLE

Note that the LoadData method must be called with parameter True to have the load evaluator located

in the IMA data store. Then it can be deleted. If LoadData is not called, MFCOM doesn’t know which

load evaluator to delete, although the load evaluator name is given. In other words, the real

The Ultimate Guide to MFCOM

63

initialization happens when LoadData is called. Setting the load evaluator name merely causes MFCOM

to save the load evaluator name.

Such a behavior is inconsistent with some other objects, e.g. the MetaFrameApplication object, which

has an Initialize method. MFCOM cannot initialize itself upon receiving the load evaluator name because

it doesn’t know if the caller wants to create a new load evaluator or do something with an existing one.

Calling SaveData without calling LoadData tells MFCOM to try to create a new load evaluator. This is

shown in the code in the previous section. Calling LoadData definitely indicates to MFCOM that you

want to do something with an existing load evaluator.

3.4.6 Modify a Load Evaluator

To modify a load evaluator, we need to create the object, set the load evaluator name, and load the

data. Then we can use the function AddOneRule to add rules if necessary. We can also remove rules. We

also need to consider attaching servers to the load evaluator. The code to do the above is listed below.

Set LEObj = CreateObject("MetaFrameCOM.MetaFrameLoadEvaluator")

LEObj.LEName = LEName

If bDelete = False And bCreate = False And bDesc = True Then

 LEObj.Description = LEDesc

End If

If bDelete = False And bCreate = False Then

 LERules.RemoveByType RuleID

 LEObj.AttachToServerByName ServerName

End If

LEObj.Rules = LERules

LEObj.SaveData

Apparently the above code is incomplete. The code just illustrates the usage of the RemoveByType

method for the load evaluator rules collection and the AttachToServerByName method for the load

evaluator object.

3.4.7 The Complete Code

The following is the complete code in the sense that it should work as specified. Note that the schedule

rule is not supported. Also note that the code should be enhanced with sufficient error checking, which

may double the size of the code. So for brevity and easier reading of the code, error checking is not

included in the code.

The Ultimate Guide to MFCOM

64

Again, as a reminder, the code should be stored in a .wsf file with the <package>, <job>, <reference>,

and <script> tags defined.

Option Explicit

Sub PrintUsage()

 WScript.Echo "Usage: [-c|-d] lename [-e description] " & _

 "{+|-RuleID[/Param1[/Param2]]} {Servers}"

End Sub

Dim Args, bCreate, bDelete, LEDesc, LEName, LEObj, iNext

Dim bRule, bAdd, RuleID, Param1, Param2, bOk, bDesc

Set Args = Wscript.Arguments

bCreate = FALSE

bDelete = FALSE

LEDesc = ""

If Args.Count = 0 Then

 PrintUsage()

 WScript.Quit 1

End If

If Args(0) = "-c" Or Args(0) = "-d" Then

 If Args.Count = 1 Then

 PrintUsage()

 WScript.Quit 2

 End If

 LEName = Args(1)

 iNext = 2

 If Args(0) = "-c" Then

 bCreate = True

 Else

 bDelete = True

 End If

Else

 LEName = Args(0)

 iNext = 1

End If

Set LEObj = CreateObject("MetaFrameCOM.MetaFrameLoadEvaluator")

LEObj.LEName = LEName

The Ultimate Guide to MFCOM

65

If bDelete = True Then

 LEObj.LoadData 1

 LEObj.DeleteLE

 WScript.Quit 0

End If

If bCreate = False Then

 LEObj.LoadData 1

Else

 LEObj.Rules = CreateObject("MetaFrameCOM.MetaFrameLMRules")

End If

bDesc = FALSE

If Args.Count >= iNext + 1 Then

 If Args(iNext) = "-e" Then

 iNext = iNext + 1

 If iNext = Args.Count Then

 PrintUsage()

 WScript.Quit 4

 End If

 LEDesc = Args(iNext)

 iNext = iNext + 1

 bDesc = True

 End If

 Dim I

 For I = iNext To Args.Count - 1

 bRule = IsRuleSpec(Args(I), bAdd, RuleID, Param1, Param2)

 If bRule Then

 If bAdd Then

 bOk = AddOneRule(LEObj.Rules, RuleID, Param1, Param2)

 Else

 LEObj.Rules.RemoveByType RuleID

 End If

 Else

 LEObj.AttachToServerByName Args(I)

 End If

 Next

End If

If bDesc = True Then

 LEObj.Description = LEDesc

End If

LEObj.SaveData

Function IsRuleSpec(s, ByRef bAdd, ByRef RuleID, ByRef Param1, ByRef Param2)

The Ultimate Guide to MFCOM

66

 Dim p1, p2

 If Mid(s, 1, 1) = "+" Then

 bAdd = True

 ElseIf Mid(s, 1, 1) = "-" Then

 bAdd = False

 Else

 IsRuleSpec = False

 Exit Function

 End If

 RuleID = 0

 Param1 = ""

 Param2 = ""

 If IsNumeric(Mid(s, 2)) Then

 RuleID = CInt(Mid(s, 2))

 IsRuleSpec = True

 Exit Function

 End If

 p1 = InStr(2, s, "/")

 If p1 > 0 Then

 If Not IsNumeric(Mid(s, 2, p1 - 2)) Then

 IsRuleSpec = False

 Exit Function

 End If

 RuleID = CInt(Mid(s, 2, p1 - 2))

 p2 = InStr(p1 + 1, s, "/")

 If p2 > 0 Then

 Param1 = Mid(s, p1 + 1, p2 - p1 - 1)

 Param2 = Mid(s, p2 + 1)

 Else

 Param1 = Mid(s, p1 + 1)

 End If

 End If

 IsRuleSpec = True

End Function

Function AddOneRule(ByRef LERules, RuleID, Param1, Param2)

 Dim OneRule

 Set OneRule = CreateObject("MetaFrameCOM.MetaFrameLMRule")

The Ultimate Guide to MFCOM

67

 OneRule.RuleType = RuleID

 If RuleID = LMRuleCPU Or RuleID = LMRuleContext Or _

 RuleID = LMRuleMemory Or RuleID = LMRulePageFault Or _

 RuleID = LMRulePageSwap Or RuleID = LMRuleDiskIO Or _

 RuleID = LMRuleDiskOp Then

 OneRule.LWM = CInt(Param1)

 OneRule.HWM = CInt(Param2)

 ElseIf RuleID = LMRuleAppUser Then

 OneRule.LWM = CInt(Param1)

 OneRule.AppDN = Param2

 Else

 WScript.Echo "Invalid load evaluator rule type " & RuleID

 AddOneRule = False

 Exit Function

 End If

 LERules.AddRule OneRule

 AddOneRule = True

End Function

The Ultimate Guide to MFCOM

68

Part Two

Advanced Topics

The Ultimate Guide to MFCOM

69

4 MFCOM INTERNALS

So far we’ve looked at and used MFCOM only externally. To help the reader fully understand how

MFCOM, IMA, and CPS work, it is a good idea to introduce some of the internal works of the involved

components. Normally, you shouldn’t need to know all these. But life in the software industry world

would not be complete without encountering some bugs once a while. Once that happens, some of the

knowledge you’ll learn in this section will save you a lot of time, and Tylenol.

We’ll only examine the things that are interesting to us. CPS is so big, numerous books have been

written about it. It won’t be possible (and worthy of it) for us to go through ever corner of it.

4.1 DATA FLOW

Understanding the data flow among the components involved in MFCOM calls helps a great deal in

identifying and isolating problems found in running complicated MFCOM applications. Data flows in two

directions. One is output, which is from the inside of the farm components to the end user. The other

direction is input, which is from the end user to the targeted objects or components in the farm.

In the following descriptions, we’ll use the diagram below to help explaining the details. Assume that we

have Server1 as the “local” MFCOM server. This is the server, on which we run our MFCOM code. We

may be connecting to this MFCOM server locally or remotely. In either case, it doesn’t matter for our

discussion. Another server Server2 is included in the picture to help illustrating the “remoteness” of

some operations.

Included in the picture is also a data store, which in most cases can be an Access, SQL, or Oracle

database. On each server, there is also a cache that stores more dynamic data for quick access.

Please note that the data collector is not in the picture. For our discussion, the data collector is not

involved. Data collectors are more important for IMA to IMA communications.

The Ultimate Guide to MFCOM

70

For the output stream, MFCOM is the final stop before the data is presented to an end user. The data

gathered by MFCOM is obtained from the IMA SAL (subsystem access layer), which provides a RPC like

interface for accessing the core IMA data. MFCOM interacts only with the SAL.

The SAL gets the data from the IMA core, which consists of a number of subsystems. Each subsystem is

designed to deal with a specific set of tasks. The division of subsystems makes it easier for us to develop

and test a large system. It would be too large if we used only one module to do everything, although

there’s nothing to prevent someone from doing something like that.

When the IMA SAL receives a request from MFCOM to read some data, it forwards the request to either

the local server or remote server to get the data. Majority of the data access is directed to the local

server. This is much faster than going to a remote server. If it needs to go to the remote server, it

typically goes to the remote server’s IMA service in the form of an out of server RPC call.

The IMA service, either on the local server (Server1) or the remote server (Server2) gets the data from

the persistent data store for most farm and server configuration data (farm settings, server settings,

The Ultimate Guide to MFCOM

71

published applications, etc.). Sometimes it may also get the data from the local host cache, e.g., session

data.

The data that is stored in each server’s registry needs to be retrieved from each server. For these kinds

of data, the requests are always sent to each individual server by IMA.

Sometimes an IMA service will act on behalf of the SAL request to go to another server to request the

data, although it appears that the request is made only to the local server from the SAL perspective.

The IMA SAL never sends a request to another server’s local host cache.

For the input stream, data basically follows the same directions. Some of them are directed to the local

IMA service, which typically stores the data in the persistent data store. Some of them are directed to

the remote server, which typically stores the data in the server’s registry. It doesn’t make sense to send

the request to a remote server and then have the data stored in the persistent data store.

But the input stream never goes to the local host cache, which doesn’t store any data that can be

modified via the MFCOM interface. So to the MFCOM users, the local host cache is a read-only data

source.

In summary, MFCOM data is read from both the persistent data store and the local host cache. The

access to the persistent data store is made through the local IMA service. Only those accesses that

request data stored on each individual server will be directed to the remote servers. The redirection is

sometimes made by the SAL call itself or sometimes is made by the local IMA service acting like a proxy.

MFCOM data is written to the persistent data store or the remote server’s registry only. MFCOM never

writes data to the local host cache.

As to which MFCOM calls are implemented, it’s specific to each call. There is no general classification on

the calls. Sometimes many different kinds of calls are used to implement one MFCOM object, e.g.,

server.

If you are interested in knowing exactly what kind of data is stored in the data store, you can use a

debugging tool provided by Citrix. The tool is dsview.exe, which is available on the Presentation Server

installation CD. This tool displays the data in the data store. It shows you the farm, server, application,

load evaluator, and policy configuration data, among many other things.

4.2 BATCHED IMA CALLS

One of the major efforts in making MFCOM work faster has been the reduction of the number of out-of-

process calls to the IMA service. As we’ve seen earlier, an RPC call is very expensive comparing to an in-

process call. In fact a call that transfers kilo-bytes of data does not take much more time than one that

The Ultimate Guide to MFCOM

72

just transfers a few bytes of data. The system spends most of the time on executing the calls than the

actual data transfer, which is very fast now with high speed networks.

Although there is not much can be done to reduce the number of DCOM calls to MFCOM from a COM

client, we have done a lot in reducing the number of calls from MFCOM to IMA. We basically “batch” up

a number of smaller calls into some big ones. For example, to resolve user accounts used in published

applications, we don’t resolve those accounts one by one. Instead, we resolve those accounts in one

batched call.

Whenever we can, we have the calls batched, which results in the best performance we can obtain

based on the existing architecture. Unfortunately, not all operations are batched or can be batched. In

MFCOM, it is not clearly stated if an operation is batched or not.

Caching is another technique we use in association with batching to improve the performance of

MFCOM. It is not possible to gain the best results by using just one technique alone. A perfect example

is the session enumeration. When sessions are enumerated, they are done with typically just one IMA

call, which collects all the data about all the sessions in one giant data packet. Once the data is stored in

the MFCOM session objects, they are not updated until a new set of session objects are enumerated.

This means that accessing the session objects returned from an enumeration does not incur additional

accesses to the IMA service.

If you want to know which calls are batched and have the data cached in objects, there’s no general

answer. But all the enumeration calls should be batched. That is, any time you do an enumeration, a few

constant number of IMA calls are used.

4.3 IDISPATCH INTERFACE

Sometimes you’ve heard the terms like “IDispatch interface”, “automation support”, “automation

interface”, or just “scriptable interface”. These all mean the same thing, which states that the COM

object supports scripting. Most scripting technologies employ interpretive execution model, which

causes the code to be compiled and executed at the same time. In contrast, many sophisticated

programming languages require the code to be compiled first and then executed.

To support scripting, a COM module must implement an interface defined by Microsoft. The name of

the interface is IDispatch, thus the term of the section title. Other terms used are just aliases of the

same thing, reflecting the different takes of the same technology.

By supporting the IDispatch interface, all MFCOM objects are scriptable. But that’s not enough.

Supporting scripting imposes additional requirements on a few other things exposed in MFCOM as well.

One of them is the type of data used by the methods and properties. The data types that are scriptable

The Ultimate Guide to MFCOM

73

are called automation compatible types. Most MFCOM properties and methods use automation

compatible data types. When a data type is not automation compatible, we need to make some

substitute types so that they are supported in scripts. A perfect example of this is the 64-bit data used in

many IMA calls. Since 64-bit integers are not automation compatible, we’ve defined a MetaFrameID

object to support the access of object IDs from scripts. In many other cases, we simply break up a 64-bit

number so that it’s accessed using two 32-bit integers, which are automation compatible.

Although supporting automation was one of the original design goals in MFCOM, automation was not

100% supported due to the omission of using automation compatible data types in some of the

properties and methods. Many properties that return array of strings were not automation compatible.

An example of this is the executables, mime types, and the extensions for file types. Those were defined

as arrays of strings. But they were not defined in a way that is automation compatible. So we ended up

defining properties like ExtensionsVT, MimeTypesVT, and ExecutablesVT properties for the file type

object.

But there’s a downside to supporting script this way, the same properties appear as arrays of objects,

rather than arrays of strings in .NET languages (C#, e.g.). In reality, the .NET interpretation is correct,

these are really arrays of objects. But that’s the only form accepted by scripts. An array of string is not

considered automation compatible by COM.

The execution path for the IDispatch interface and the non-IDispatch interface is quite different. The

IDispatch interface finds out the actual C++ call to be used at runtime. The non-IDispatch interface is

sometimes called v-table interface, as it uses the v-table entries in compiling the C++ code. C++ code

that uses MFCOM may be written to use IDispatch. But a more efficient way is to not use IDispatch and

use v-tables directly. This requires the code to be compiled. Thus usually C++ MFCOM clients have the

calls resolved at compile time, not run time. All of the C++ examples provided in the MFCOM SDK are

done this way.

The differences in IDispatch and v-table interfaces may explain some of the less well known bugs in

some versions of MFCOM. The bugs prevent some C++ code from working but scripts would work fine.

All these bugs have been fixed in various hotfixes as soon as they were discovered.

4.4 INDIRECT REFERENCE

Many MFCOM properties are pointers or references to another object, which exposes properties and

methods defined for that object. If you use the properties and methods of this object from the original

object through the reference or pointer, you are making indirect references of these properties or

methods.

The Ultimate Guide to MFCOM

74

The best way to explain this is through an example. We’ve all seen the script that checks if the current

user is an administrator. You can write your code this way:

Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

f.Initialize MetaFrameWinFarmObject

If f.WinFarmObject.IsCitrixAdministrator = 0 Then

 WScript.Echo "You are not a Citrix administrator"

Else

 WScript.Echo "You are a Citrix administrator"

End If

Or you can write code this way:

Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

f.Initialize MetaFrameWinFarmObject

Set w = f.WinFarmObject

If w.IsCitrixAdministrator = 0 Then

 WScript.Echo "You are not a Citrix administrator"

Else

 WScript.Echo "You are a Citrix administrator"

End If

On the surface, there’s really not much difference. Both ways work as expected. The first uses an

indirect reference, the second uses direct reference. For this particular case, the use of indirect

reference is not significant.

For some other cases, however, using indirect references may cause issues that may be at least

interesting, and sometimes eve obscure bugs. Take a look at the following code:

WScript.Echo s.AppliedPolicy2.AllowTWAINRedirection

WScript.Echo s.AppliedPolicy2.TWAINAllowedBandWidth

WScript.Echo s.AppliedPolicy2.TWAINBandwidthRule

WScript.Echo s.AppliedPolicy2.TWAINCompressionLevel

Here the variable s holds a reference to a MetaFrameSession object. The above four lines of code print

out some of the settings for the session’s applied policy. On the surface, it seems that this is novel code.

But behind the scenes, MFCOM actually creates and returns four different objects for each statement.

This is very inefficient at least because getting the applied policy setting for a session involves a lot of

things invisible to the user. Fortunately the code only reads the properties, so beyond inefficiency, there

doesn’t seem to be other problems.

The Ultimate Guide to MFCOM

75

A better way to do the same thing is using the following code:

Set p = s.AppliedPolicy2

WScript.Echo p.AllowTWAINRedirection

WScript.Echo p.TWAINAllowedBandWidth

WScript.Echo p.TWAINBandwidthRule

WScript.Echo p.TWAINCompressionLevel

By retrieving the applied policy only once, we reduce a large number of MFCOM calls to the backend

(IMA). The code is more reliable too.

Avoid using indirect reference. Use indirect reference only if you are certain that the same object is

returned by MFCOM. For example, the following code uses indirect reference:

WScript.Echo f.WinFarmObject.EnableSNMPAgent

WScript.Echo f.WinFarmObject.SNMPDisconnectTrap

WScript.Echo f.WinFarmObject.SNMPLogoffTrap

WScript.Echo f.WinFarmObject.SNMPLogonTrap

It is the same as the following code. There is no extra overhead because the farm object always return

the same WinFarm object.

Set w = f.WinFarmObject

WScript.Echo w.EnableSNMPAgent

WScript.Echo w.SNMPDisconnectTrap

WScript.Echo w.SNMPLogoffTrap

WScript.Echo w.SNMPLogonTrap

How do we know if it is safe to use indirect reference?

The MFCOM reference guide doesn’t help. The guide doesn’t tell you if a new object is returned if you

get the reference to another object. The following table should help.

Property/Method Return the same object?

IMetaFrameAccountAuthority2::Credential Yes

IMetaFrameApplication*::WinAppObject* Yes

IMetaFrameApplication*::ContentObject* Yes

IMetaFrameApplication*::StreamedAppObject* Yes

IMetaFrameContent4*::IconObject No

IMetaFrameWinApp*::IconObject No

The Ultimate Guide to MFCOM

76

IMetaFrameEventQueue::LastObjectForEvent Yes

IMetaFrameFarm*::WinFarmObject* Yes

IMetaFrameWinFarm4::SpeedBrowse No

IMetaFrameWinFarm5::SpeedScreen Yes

IMetaFrameAccountFolder*::ParentFolder* No

IMetaFrameAppFolder*::ParentFolder* No

IMetaFrameFolder*::AppFolder* Yes

IMetaFrameFolder*::ParentFolder* No

IMetaFrameFolder*::SrvFolder* Yes

IMetaFrameFolder*::AccountFolder* Yes

IMetaFrameSrvFolder*::ParentFolder* No

IMetaFrameGroup*::AppliedPolicy* No

IMetaFrameLMRule::AppObj No

IMetaFrameMultiString*::Item* Yes

IMetaFrameMultiString2::ItemEx Yes

IMetaFrameMyAccount::Credential Yes

IMetaFrameMyAccounts::Credential Yes

IMetaFrameMyServer3::ServerResMgmt Yes

IMetaFramePolicy*::UserPolicy* Yes

IMetaFramePolicy*::SessionPolicy* Yes

IMetaFrameVCPolicy::CDPolicy Yes

IMetaFramePrivileges*::AdminObject* No

IMetaFramePrivileges*::FolderObject* No

IMetaFrameProcess*::WinProcessObject* Yes

IMetaFrameServer*::WinServerObject* Yes

IMetaFrameServer*::AppliedPolicy* No

IMetaFrameServer5::ServerResMgmt Yes

IMetaFrameSession*::AppliedPolicy* No

IMetaFrameUser*::AppliedPolicy* No

In addition, you can use CdfView to see if some trace statements are printed out every time you make a

indirect reference.

Note the following general rules.

 All enumerations always return a new object. For enumerations, do not use indirect references.

Many times you run into problems if you do.

 All calls that return an IMetaFrameID interface return a new MetaFrameID object.

 All calls that return an IMetaFrameTime interface return a new MetaFrameTime object.

The Ultimate Guide to MFCOM

77

 All calls named as CreateXxx return a new object.

It is really bad if you use indirect reference to set a value. Most of the time everything should work, but

you may overwrite your previous settings.

4.5 MFCOM RELATED REGISTRY ENTRIES

MFCOM creates tons of registry entries. Every single one is documented in the SDK reference. What

needs to be noted here is the following:

All MFCOM GUIDs start with ED62xxxx. In fact MFCOM has ED62F4E0 through ED62F6DF reserved for its

use.

5 MAJOR MFCOM OBJECTS

In this section, major MFCOM objects are examined and some of the subtleties that are not documented

in the user’s reference are revealed. The information presented in this section may be used as

supplemental reference on the objects.

5.1 APPLICATION

The MetaFrameApplication object supports interfaces that define properties and methods to access

Citrix published applications. In CPS 4.5, the application object was extended significantly to support the

application streaming capability of CPS 4.5. The most drastic change lies in the conceptual model of

published applications. The new model incorporates supports for all the legacy applications, in addition

to supporting the new streaming applications and potential future extensions. So the new published

application concept is designed to support new application type combinations in the future releases of

Presentation Server without needing significant changes in the model. Prior to this, the other major

change was the introduction of the concept of published content.

5.1.1 Application Type

When you write code to create new published applications, there are many more parameters to set

than before. What makes it harder is that many parameters are conditional, which means that they are

applicable only to certain application types. Thus determining the appropriate application type is the

first step toward correctly publishing applications.

The flow chart on the next page shows you how to determine an application type using some application

properties, which are listed in the table below the flow chart.

The Ultimate Guide to MFCOM

78

AppType =
Content

App is Published Content

AppType =
WinApp

AppType =
Streamed

Is desktop

Yes

No

No Yes

No

Unknown

 app type

Yes App is
Desktop

Is IM app

No

App is
Installed

No

Yes

App is IM
packaged

AppProtocols
Count

Yes

Other

AppProtocols[0]
Value

= 1

App is streamed
to server

StreamedToServerICA

App is streamed
to desktop

StreamedToDesktop

AppProtocols[0]
Value

Other

Other

AppProtocols[1]
Value

StreamedToDesktop

Other

App is streamed to client
if possible, otherwise
streamed to server

through ICA

StreamedToServerICA

Is IM app

InstalledICA

App is streamed to client
if possible, otherwise

launch installed
application through ICA

App is streamed to client if
possible, otherwise install
the IM-packaged app and

launch through ICA

Yes No

Start

Flow chart for determining application type

= 2

The Ultimate Guide to MFCOM

79

Property Name Data Type Description

IMetaFrameApplication.AppType MetaFrameObjectType Valid values are
MetaFrameWinAppObject,
MetaFrameContentObject,
and
MetaFrameStreamedApp
Object

IMetaFrameWinApp.PNAttributes MFWinAppPNAttribute If the MFWinAppDesktop
is set, the application is a
published desktop.

IMetaFrameWinApp.IMAppID MetaFrameID If this value contains a
valid IM application ID, the
application is a published
IM-packaged application.

IMetaFrameApplication6.AppProtocols Int[] Array of application
streaming protocols.

Table of application properties used in the flow chart

The following table shows the detailed explanation for the questions used in the flow chart.

Question Explanation

Is desktop IMetaFrameWinApp.PNAttributes & MFWinAppDesktop == 1

Is IM app IMetaFrameWinApp6.IMAppID.ID64 != 0

Questions used in the flow chart

5.1.2 Valid Application Properties

Once we are able to determine the application type, we need to further determine which properties are

valid for each application type. Note that some properties are valid for multiple types of applications.

Some are valid only for one type of application.

The following properties are valid for all application types. These are sometimes referred to as common

properties. If a property has several versions defined, only the original version is listed.

AppName

BrowserName

AppType

AppVersion

Description

ParentFolderDN

DistinguishedName

The Ultimate Guide to MFCOM

80

PNFolder

EnableApp

StartMenuFolder

HideDisabledApp

AllowRemoteAccess

IconObject

HideFromBrowserEnum

HideFromPNEnum

AddToClientStartMenu

PlaceUnderProgramsFolder

AddShortcutToClientDesktop

AllowAnonymousConnections

AccessConditionFlag

AccessSessionConditions

Users

Groups

Accounts

AccountFolders

AppID

AppProtocols

FileTypes

IcoFileData

The following properties are valid for Windows applications, which are the published applications in

traditional sense. These properties are also referred to as WinApp properties.

ServerBindings

AIEIsolated

PublishingFlags

AttachedLE

DefaultInitProg

DefaultWorkDir

DefaultEncryption

DefaultSoundType

DefaultWindowColor

DefaultWindowHeight

DefaultWindowScale

DefaultWindowType

DefaultWindowWidth

DesktopIntegrate

MFAttributes

PNAttributes

ServerBinding

Servers

AllowMultiInstancePerUser

CPUPriority

EnableSSLConnections

The Ultimate Guide to MFCOM

81

InstanceLimit

WaitOnPrinterCreation

IconDataBitmap

IconDataSize

IconMaskBitmap

IconMaskSize

IconStream

LoadOnAllServers

LoadOnServer

IMAppID

For a published desktop, all the WinApp properties are valid with the DefaultInitProg and

DefaultWorkDir properties set to empty strings.

An IM-packaged application is a WinApp with the IMAppID property set to a valid MetaFrameIMApp

object.

The following properties are valid for a published content.

ContentAddress

ContentName

ContentID

ContentVersion

EnableContent

PNFolder

HideDisabledContent

IconDataBitmap

IconDataSize

IconMaskBitmap

IconMaskSize

IconStream

The following properties are valid only for a streamed application.

AlternatePackages

CachingOption

DefaultPackageLocation

DowngradeUserPrivileges

IsOffline

PackageProgramArguments

PackageProgramName

Depending on the values of the AppProtocols data, a streamed application may be combined to form

compound applications. The possible combinations are shown in the previous flow chart.

The Ultimate Guide to MFCOM

82

The methods related to the properties for the specific types of applications can be categorized similarly.

5.1.3 Validation

Validating the consistency of the data a published application is done by the SaveData call every time

the data is saved. There is also a separate Validate method that performs the same data checking. The

use of the Validate method is optional and in many cases redundant if you call it just before calling

SaveData.

Because of the large number of application properties and even more combinations of the property

settings, it is very difficult for a MFCOM user to know exactly what went wrong when SaveData fails

after some properties have been changed. Although there is a DetailedError property that is supposed

to return more detailed errors to the caller, it has never worked as designed. So users are forced to

speculate the sources of errors through some trial and error process. Some people elected to call

Validate after every property change to make the debugging easier.

The following details show exactly how the validation is performed internally in IMA. The description

below is basically a plain English translation of the C++ code that does the validation.

1. Ensure that the browser name length is less than or equal to 38 bytes in length, excluding the
trailing null character.

2. Ensure the browser name does not contain illegal characters, which are:
\/;:.*?=<>|[]()‘‖#

3. Check the uniqueness of the browser name. The browser name of an application must be
unique across the farm. Typically the name is generated automatically when a new application is
published. MFCOM allows a caller to modify the browser name.

4. Ensure the DefaultInitProg string length does not exceed 256 characters, excluding the trailing
null character.

5. Ensure the DefaultWorkDir string length (excluding the trailing null) does not exceed 256
characters.

6. Ensure the AppName string length (excluding the trailing null) does not exceed 256 characters.
7. Ensure the PNFolder string length (excluding the trailing null) does not exceed 256 characters.
8. Ensure the Description string length (excluding the trailing null) does not exceed 256 characters.
9. Ensure the StartMenuLocation string length (excluding the trailing null) does not exceed 256

characters.
10. Ensure the WindowType is valid (with integer value from 1 to 9, inclusive).
11. If the window type is custom, check the following:

a. DefaultWindowHeight is between 1 and 65535, inclusive.
b. DefaultWindowWidth is between 1 and 65535, inclusive.

12. If the window type is percentage, ensure the DefaultWindowScale is between 1 and 100,
inclusive.

13. Ensure the MFAttributes is an integer that has only the least two bits used. You should use the
MFCOM values defined for the MFWinAppMFAttribute type.

The Ultimate Guide to MFCOM

83

14. Ensure the PNAttributes property contains only valid value.
15. Ensure the DefaultSoundType is set to either 0 or 1.
16. Ensure the DefaultEncryptionLevel contains only valid value.
17. If the PNAttributes’ MFWinAppMinumumSound bit is set, the DefaultSoundType must be set to

1.
18. Ensure DesktopIntegrate property contains only valid value.
19. Ensure DefaultWindowColor contains only valid value.
20. If the IMAppID is set to a non-zero value, ensure the value is a valid IMS application ID. It must

be one of the existing IMS applications defined in the farm.
21. For each server binding defined in the application, check the following:

a. Ensure the InitialCommandLine string (excluding the trailing null) does not exceed 256
characters.

b. Ensure the WorkingDirectory string (excluding the trailing null) does not exceed 256
characters.

c. Ensure the WorkingDirectory string does not contain illegal characters, which are:
/*?‖<>|

d. Ensure the server meets the minimum encryption requirement and minimum sound
requirement.

22. If the application is configured with explicit list of users (not anonymous access), ensure that
every user is allowed to logon to every server.

The most expensive part of the above validation is the last step, which needs to verify the users are all

valid on all servers. Thus in CPS 4.5, we introduced a call to allow you to avoid the validation of the

server logon capability checking for the users. You should avoid the user logon validation only for the

users that have already been validated. For new users, they should always be validated.

Note that the user logon validation can only be avoided when you save the application data. The

Validate method doesn’t have this option.

The next most expensive validation is step 21.d, which goes to every server to check the server’s

encryption and sound requirements.

A content is validated using the following steps:

1. Ensure that the browser name length is less than or equal to 38 bytes in length, excluding the
trailing null character.

2. Ensure the browser name does not contain illegal characters, which are:
\/;:.*?=<>|[]()‘‖#

3. Check the uniqueness of the browser name. The browser name of an application must be
unique across the farm. Typically the name is generated automatically when a new application is
published. MFCOM allows a caller to modify the browser name.

4. Ensure the ContentAddress string length does not exceed 256 characters, excluding the trailing
null character.

5. Ensure the ContentName string length (excluding the trailing null) does not exceed 256
characters.

The Ultimate Guide to MFCOM

84

6. Ensure the PNFolder string length (excluding the trailing null) does not exceed 256 characters.
7. Ensure the Description string length (excluding the trailing null) does not exceed 256 characters.
8. Ensure the PNAttributes property contains only valid value.
9. Ensure DesktopIntegrate property contains only valid value.
10. Ensure the PublishingFlags property contains only valid value.
11. If the application is configured with explicit list of users (not anonymous access), ensure that

every user is valid.

The validation on content is much simpler. The most expensive part is the validation on the user list,

which, unlike for WinApp, cannot be avoided.

A streamed application is validated only when you call the SaveData method. The Validate method for a

streamed application does nothing. It always returns success. The steps to validate a streamed

application are as follow:

1. Ensure that the browser name length is less than or equal to 38 bytes in length, excluding the
trailing null character.

2. Ensure the browser name does not contain illegal characters, which are:
\/;:.*?=<>|[]()‘‖#

3. Check the uniqueness of the browser name. The browser name of an application must be
unique across the farm. Typically the name is generated automatically when a new application is
published. MFCOM allows a caller to modify the browser name.

4. Ensure the AppName string length (excluding the trailing null) does not exceed 256 characters.
5. Ensure the PNFolder string length (excluding the trailing null) does not exceed 256 characters.
6. Ensure the Description string length (excluding the trailing null) does not exceed 256 characters.
7. Ensure DesktopIntegrate property contains only valid value.

Note that there are no users defined for a streamed application. Users can be defined for a WinApp,

which can be combined with a streamed application to form a compound application.

5.1.4 Error Processing

Error processing related to the properties and methods of a published application will be easy to

understand with the information presented in the previous sections. Basically all errors are reported as

E_FAIL. To further analyze what causes a SaveData to fail, the programmer should use the validation

steps described above to find out if all the values are set correctly.

Avoid using the DetailedErrors property, it does not work.

Publishing an application with invalid users is the most common cause of errors.

The Ultimate Guide to MFCOM

85

Again, please use the SaveData2 method with extreme care. If you allow invalid users to be configured

in a published application’s user list, you can corrupt the IMA data store. In most cases, you need to

delete the entire published application.

5.2 SERVER

The MetaFrameServer object provides access to the properties of a Presentation Server. The methods

defined for a server object allows the caller to perform some server related operations, e.g. attaching a

load evaluator to a server.

Server data is much simply structured than application data. To access server data, one can use either

the IMetaFrameServer interfaces or IMetaFrameWinServer interfaces. There are some hidden

differences, however, in the source of the data. Some data is retrieved from the IMA data store, some

from the local host cache (LHC), and some are from the registries or even other locations on the server

being accessed.

Most of the server configuration settings are stored in the IMA data store. Accessing these settings is

relatively cheap.

The following list summarizes accesses to data that is not stored in the IMA data store.

1. Enumerating account authorities involves calculating the trust intersection of all the account
authorities trusted by the server. This calculation is expensive when multiple account authorities
are involved.

2. Enumerating the processes causes the call to be forwarded to the remote server, on which the
processes are enumerated using Windows Terminal Server call WTSEnumerateProcesses and
the data is returned to the caller through IMA and MFCOM.

3. Enumerating sessions causes the call to be forwarded to the remote server, on which the
sessions are enumerated using the WTSEnumerateSessions function.

4. The RDP port number is obtained from the local server’s registry. In more strict sense, this
should be considered a bug because the remote server may have a different RDP port number
setting. Luckily not many administrators change the RDP port number.

5. The session throughput data defined in IMetaFrameWinServer4 are obtained from the remote
server through the Citrix ICA WinStation driver. Because it is expensive to make calls
individually, the counters are not updated until the caller explicitly update them using
UpdateThroughputData.

5.3 SESSION

Similar to the server data, session data come from different sources. Because some of the session data

may be very volatile, improving the performance of accessing session data has been one of the top

priorities in each release of MFCOM.

The Ultimate Guide to MFCOM

86

All session properties are defined in just one session object. But internally, the ways that session data

are obtained are quite complex. To write high performance code, it is beneficial to know some of the

inner workings of session data access.

Depending on how a session object is obtained, accessing the same properties in an object requires

different amount of time. In other words, a property may be accessed immediately if the session object

has been returned from a farm enumeration but the same property access may trigger a network access

if the session object has been returned as a result of enumeration from a server. The following tables

group the properties according to the access method. Properties that belong to the same group can be

accessed without incurring additional IMA access. Accessing properties that don’t belong to the same

group results in at least one more additional IMA access. Although a few IMA access is not a significant

overhead, if your code does such access in a loop, the total amount of overhead will become significant.

For example, the following VBScript code enumerates the sessions for the entire farm.

Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

For Each s In f.Sessions

 ‗ Use the object s, which is a MetaFrameSession object

Next

If you access only the properties that are listed in the section below, the whole loop should execute

quickly, even if you have thousands of sessions in the farm.

But if you access the ClientAddress property, as shown below:

Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

For Each s In f.Sessions

 WScript.Echo s.ClientAddress

Next

The loop will last much longer if you have large number of sessions in the farm. This is because the

ClientAddress does not belong to the group of properties from the farm enumeration. Each access

causes one additional IMA access.

5.3.1 Common Session Data

The following properties incur no additional IMA access for a session object that has been returned from

MFCOM as a result of enumerating sessions from a farm, server, server folder, user, or application

object.

AAName

UserName

The Ultimate Guide to MFCOM

87

SessionName

SessionID

ServerName

ClientName

AppName

LogonTime

SessionState

AccessSessionGuid

DeviceID

Note that the AppName property is available only through the enumeration from the objects listed

above. There are no other ways to access the AppName property as it belongs to no other property

groups.

5.3.2 Basic Session Data

The following session properties are grouped together. If one of them is accessed, there is no additional

cost to access the other properties in the group.

AAName

UserName

SessionID

ServerName

SessionName

LogonTime

ConnectTime

DisconnectTime

CurrentTime

LastInputTime

SessionState

5.3.3 Client Data

The following properties belong to the same group. If one of them has been accessed, the other

properties can be accessed without additional IMA access.

SessionID

ServerName

ClientName

ClientBuild

ClientHardwareID

ClientProductIDValue

ClientProductID

ClientHRes

ClientVRes

The Ultimate Guide to MFCOM

88

ClientColorDepth

ProtocolType

ClientAddress

ClientAddrFamily

ClientDirectory

Note that AAName, UserName, and SessionName are missing from the list.

5.3.4 Additional Client Data

The following properties are grouped together. They appear to be related to the client data above, but

accessing them requires another IMA call.

ClientCacheTiny

ClientCacheLowMem

ClientCacheXms

ClientCacheDisk

ClientDimCacheSize

ClientDimBitmapMin

ClientDimVersion

ClientModemName

ClientEncryption

ClientLicense

ClientBuffers

ServerBuffers

ClientModules

5.3.5 Winstation Data

The following properties are grouped together.

SessionID

ServerName

ICABufLen

So try to avoid accessing ICABufLen, this single property causes an additional IMA access.

5.3.6 SMC Counters

The following SMC (Session Monitoring and Control) counters are grouped together.

BytesSentPreCompression

BytesSentPostCompression

BytesRcvdPreExpansion

The Ultimate Guide to MFCOM

89

BytesRcvdPostExpansion

LastLatency

AverageLatency

LatencyDeviation

OutputSpeed

InputSpeed

BandwidthCap

5.3.7 Side Effects

Some properties may be updated when some session methods, e.g. Logoff, are accessed. Each method

may need data from different data groups. In general, when a method is called and the necessary data is

not available, MFCOM tries to get the data from IMA in the following order.

1. Try load common data.
2. Try load basic data.
3. Try load client data.

The following table summarizes the side effect of calling some session methods. The order of the data

groups in the right column is significant.

Method Data Groups

Disconnect Basic and Client

Logoff Basic and Client

GetAppliedPolicy and get_Policies Common, otherwise Basic and Client

Reading the properties of one data group may cause another data group to be read. The following list

shows the dependencies.

1. Accessing the additional client data requires accessing the basic and client data.
2. Accessing the SMC counters requires accessing the basic data.

5.4 LOAD EVALUATOR

The load evaluator object is very similar to the application object in many ways. Its data is loaded and

saved explicitly. Once the data is loaded, accessing the properties does not cause additional IMA data

access. Bear in mind of the following when accessing load evaluators.

1. There is no Initialize method for the load evaluator object. Instead, setting the LEName property
and calling the LoadData method is equivalent to initializing a load evaluator object.

2. LoadData is always needed to access an existing load evaluator, even if you just need to delete
it.

The Ultimate Guide to MFCOM

90

3. Each load evaluator rule occupies a specific spot in the rules collection. Although the rules
collection is defined as an array, it doesn’t behave like an array.

4. Each rule can be enabled or disabled by adding or removing it from the rules collection.
5. Duplicate rules are not checked. If a rule to be added is already in the collection, the new

settings simply replace the old settings for the same rule, no error is reported.
6. When creating a new load evaluator, the Rules property can be set. But it cannot be set for an

existing load evaluator. To change the rules for an existing load evaluator, you need to use the
Rules property explicitly.

The last point can be explained further with the code examples below. Suppose the variable LE is

referenced to a MetaFrameLoadEvaluator object, then:

le.Rules = LERules ‘ This works only if le is a newly created load evaluator.

le.Rules.Add NewRule ‘ Add a new rule to an existing load evaluator.

In other words, the Rules property can only be set once during the entire life time of the load evaluator

object.

Most of the rules take values like integers and strings. But the schedule rule is an exception. This rule

takes an integer that is encoded. The following diagram shows how the 32-bit integer is encoded.

Bit 31-16 Bit 15-0

End Time Start Time

Bit 15-8 Bit 7-5 Bit 4 Bit 3 – 0 Bit 15-8 Bit 7-5 Bit 4 Bit 3-0

Hour Not Used Half hour Day of week Hour Not used Half hour Day of week

The hour is specified in military time format.

5.5 ACCOUNT

One of the things that should be told to end users is the handling of user account data by MFCOM and

IMA. We’ve tried to hide everything from the end users, but because of the design and complexity of

account resolution by NT domain and Active Directory, it’s better for users to know the inner workings

of the user resolution so that high performance applications can be developed.

Any time you need to access information about users, you need to use one of the three MFCOM objects,

MetaFrameUser, MetaFrameGroup, and MetaFrameMyAccount. It is recommended that you use

MetaFrameMyAccount object in the recent releases of Presentation Server. The MyAccount object

combines both user and group and it’s more convenient to use. Internally, all three objects are

implemented using the same code. By using MyAccount, you don’t need to write separate code to deal

with users and groups.

The Ultimate Guide to MFCOM

91

If you take a closer look at the MyAccount object, you’ll notice a UserID property, which was just

recently introduced. In previous versions of MFCOM, there was not such a property. The introduction of

this property was a result of solving complicated user data usage scenarios.

In Windows, a user is identified using a user name and a domain name, which may be an Active

Directory domain. Since user and domain information is dynamic, i.e. the user may or may not exist

when it is used, Windows must ensure that the user identity is good before it can be used. This process

is called user resolution. In CPS environment, many objects store user information. For example, a

published application maintains a list of users. When users in a published application are specified, they

must be resolved so that no bogus users are stored in the published application. The resolution of a user

yields a SID (security ID) and IMA stores this SID in the published application.

Resolving a user is an expensive operation because it involves contacting the domain controller and

many other components of the networks and systems. IMA standardizes on the SID to avoid

unnecessary user resolution. Externally, the usage of the SID may not be necessary but when the

number of users needs to be resolved is very large, the resolution of those users can take a long time.

So the introduction of the UserID property allows the callers to help in reducing the number of user

resolutions. If your application takes advantage of the use of the UserID, each user needs to be resolved

only once. Previously, without the UserID, each time a user is used, it needs to be resolved so that it can

be stored in the IMA data store, although the SID has been cached in each user object for many MFCOM

releases.

IMA defines a proprietary format for the UserID, which is documented as an opaque string that

shouldn’t be interpreted. But knowing its format really helps writing high performance applications as it

is possible that you can create the UserID yourself without using IMA.

A user ID is a string with 4 substrings separated by forward slashes. The first substring is a hex number

that identifies the account type. The second string is the account authority type. The third string is the

account authority name. The last string is the account SID. For example, the following string represents

an IMA user ID:

0X1/NT/CITRITE/S-1-0X05-21-1076320343—1157566173—1386271477-6401

Account types are encoded as follow:

Account Type Value

Domain user 0x1

Domain group 0x2

Local account 0x4

Global account (domain users or groups) 0x8

The Ultimate Guide to MFCOM

92

Universal groups 0x10

Domain local groups 0x20

Country 0x40

Organization 0x80

Organizational unit 0x100

AD folder 0x200

AD alias 0x400

Locality 0x800

AD organizational unit 0x1000

In the above table, the values are used as bit flags. Note that many combinations are invalid. The most

frequently used types are the first two entries.

The account authority type can be either “NT” or “NDS”. AD uses “NT” as account type. Here “CITRITE” is

the name of the account authority. The last string is the SID of the user account.

With the above knowledge, you can create your own IMA user ID and use it with the

MetaFrameMyAccount object to supply user data wherever is needed. Giving MFCOM your own user ID

saves the time to resolve the user.

Internally, a single C++ class is used to implement all three objects. A big code refactoring effort during

the Hudson (MetaFrame XP FR3) time frame made that possible. Since the MyAccount object has been

around for some time, it makes sense to use it whenever user account access is needed. It is much

easier to use and in some calls only the MyAccount object is used.

To avoid unnecessary user name to ID conversion and vice versa, MFCOM delays such conversions until

they are absolutely necessary. To reduce the number of IMA access (each access is an out of process

RPC call), MFCOM also batches up the conversions. Still each user is converted individually using

Windows calls LookupAccountSid and LookupAccountName. Such calls work for only one user at a time.

Knowing the above, keep the following in mind when you write code that uses accounts:

1. Limit access to the account name properties of an account object. Each access causes MFCOM
to call the IMA functions to convert the user SID to user name.

2. If you need to access an account object, try to keep using the same object for different uses.
MFCOM keeps the user ID cached in the object. When the ID and the external name strings have
been converted, MFCOM will not convert them again.

3. The accounts stored in an application or policy object are converted more efficiently. Batch calls
are used to convert all the accounts stored in an application or policy object. So even if you
access only one account in the user list of an application object, all the user accounts are
converted. Accessing additional accounts incur no additional significant cost.

The Ultimate Guide to MFCOM

93

5.6 ADMINISTRATOR

The MetaFrameAdministrator object inherits from the IMetaFrameMyAccount interface. This is the only

object that shares the interface defined for another object. Every other MFCOM object supports

interfaces defined only for that particular object. The intention here was to show that administrators are

just users with additional properties defined for them. This cross sharing of interfaces has caused

problems, which is out of the scope of this document because these problems do not affect how

MFCOM is used.

In addition to the user account information, administrators have permissions assigned to them.

Administrators are categorized into three types: full, read-only, and custom.

If you look at the methods and properties defined for the MetaFrameAdministrator object, you’ll notice

that there is a SaveData method defined. But there is no LoadData method, like the application and load

evaluator objects. An administrator object is initialized using the Initialize or InitEx method. Prior to the

two methods were introduced, administrator data was initialized by initializing the data defined in the

IMetaFrameMyAccount interface. Without an explicit LoadData method, administrator properties are

loaded on demand. One property access may result in loading some other properties of the object.

Everything is transparent to the user.

The SaveData method serves two purposes. When the administrator doesn’t exist, it creates a new

administrator. If the administrator already exists, it simply saves the changes to the administrator data

to the IMA database.

Privileges defined for administrator may be different on different releases of Presentation Server.

Apparently new privileges defined in new releases don’t exist in previous releases. But privileges defined

in the previous releases maybe deprecated in new releases. To find out a complete set of privileges

supported on a given release of Presentation Server, you can enumerate the privileges for a full

administrator.

The current administrator is the user who is running a MFCOM script. At this point we should all know

that the farm object defines a special method to allow you to find out if you are an administrator. In

addition, the HasPrivilege method tells you if you have a specific privilege. The CurrentUserAccessType

and CurrentUserPrivileges properties tell you exactly what kind of administrator you are and your access

privileges.

An administrator may not be explicitly defined. In many deployments, administrators are put in a user

group, which is defined as a Citrix administrator. Accessing the properties of an administrator that

belongs to a group posts some problems for MFCOM. MFCOM is able to access the properties stored in

IMA. The properties are stored only for explicitly defined administrators. For example, if you want to

The Ultimate Guide to MFCOM

94

enumerate the privileges for an administrator that only belongs to a group, the MFCOM calls fail

because the administrator doesn’t really exist in IMA. There is no simple fix for this. The only

workaround is to find out the group, to which the administrator belongs and access the privileges

assigned to that group.

5.7 PRINTER

The printer object quietly underwent a major change in CPS 4.0. Nobody seemed to have noticed the

change. In that release, most of the printer settings were moved to a policy. But still we kept using the

printer object to expose the policy settings. The following descriptions apply to only CPS 4.0 and CPS 4.5.

Although the printer object doesn’t have many properties or methods defined, its use is rather tricky.

We have three different types of printers defined and the printer object properties are valid depending

on the type of printer and how it is enumerated.

If the printer is a client printer, the MFCOM object that abstracts it is a MetaFrameClientPrinter object.

A client printer is basically a workaround for WinCE ICA devices, which don’t usually have the printer

drivers installed on it. Thus we define a printer on a Presentation Server for a WinCE client so that when

it connects to the server, the server associates the printer with the client. This association is defined in

the MetaFrameClientPrinter object. This concept has not changed since MetaFrame XP 1.0.

For network printers, they must be first imported from a print server. This operation basically tells IMA

to go out and query all the network printers from a print server. This is done by calling the

IMetaFrameWinFarm3::ImportNetworkPrinters method. These are the network printers enumerated

from the farm object when you use the IMetaFrameFarm3::Printers property. These printer objects

don’t support properties like Orientation, PaperSize, etc.

Printer connections are the objects defined to support the session printers policy. When such a policy is

created, you can specify a printer connection object and use it to define the custom printer properties

when a user session is launched. These properties are stored in the IMA’s policy object. When this

change was made in CPS 4.0, we effectively killed the old printer objects and created a new printer

connection object. But since most of the properties still remain the same, so we transformed the old

object definition into a new one without changing its name. Thus the MetaFramePrinter object

remained but it is completely different now. The IMetaFramePrinter2 interface defines the additional

properties required to support the session printers policy. At the time when farms of different server

versions (mixed farm) were still supported, this caused some confusion because a printer object would

be used for completely different purposes on servers installed with CPS 4.0 and servers installed with

earlier versions of MetaFrame Presentation Server (MPS). Now the situation should be better for farms

that run only CPS 4.0 and 4.5. For these deployments, a MetaFramePrinter object is used only to

configure a session printers policy.

The Ultimate Guide to MFCOM

95

To enumerate the network printers, you need to use the IMetaFrameWinFarm6::EnumNetworkPrinters

method. This method is actually implemented using the Windows EnumPrinters call. Everything

returned from this call is live data. The Windows EnumPrinters call is more versatile, so we introduced

another method IMetaFrameWinFarm6::EnumNetworkResources to deal with some additional cases.

Both methods are implemented using the same EnumPrinters call. We just feed them different

parameters.

Use of these two calls is not straightforward. Basically you need to understand how EnumPrinters call

and try to map the parameters for the two MFCOM calls to EnumPrinters. One of the ways to use these

calls is walk through the entire network. This walk through begins with a special resource name like

“Windows NT Remote Printers!Something”. Note that the string is not typically localized. The following

is a script that enumerates the resources and printers in the domain eng.citrite.net.

Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

f.Initialize(MetaFrameWinFarmObject)

Set w = f.WinFarmObject6

Set c = CreateObject("MetaFrameCOM.MetaFrameCredential")

c.Initialize "UserName", "Password", MFAccountDomainUser, "citrite", _

 MFAccountAuthorityADS

Set pl = w.EnumNetworkResources("Windows NT Remote Printers!Eng", _

 MFNetPrtPrinter, c)

For Each s in pl

 WScript.Echo s

Next

In this script, you need to provide a user account, with which you can access the print servers. Once you

have the network resources enumerated, you can continue the enumeration with the data returned

from the EnumNetworkResources method. The returned result is a MetaFrameMultiString object. The

following picture is visual representation of a mutli-string.

String Value Pointer

Some string

Abc 999

Data 8

Filter

String Value Pointer

Abc def 60

Ghi jkl 20

String Value Pointer

Mno pqr 98

Uvw xyz 10

The Ultimate Guide to MFCOM

96

A multi-string is a string with one additional integer value attached to it. For any kind of data that has a

string and value association, it can be stored in a multi-string. An enhancement to the multi-string is that

each string value is also associated with another multi-string.

5.8 POLICY

The policy object has gone through some major changes since it was first released. Basically, the first

release didn’t get everything done right. Then we modified the whole object definition with some new

interfaces while deprecating some previous interfaces, although not everything was deprecated. In

summary, the IMetaFrameUserPolicy and IMetaFrameUserPolicy2 interfaces should not be used,

everything defined in those two interfaces are now defined in IMetaFrameSessionPolicy interfaces.

A policy object is accessed similarly to an application or a load evaluator object. Essentially whenever

you need to access the properties of a policy object, you need to call LoadData and once you have made

changes to an object, you need to call SaveData to save the changes to IMA data store. There are some

subtle differences, however, as listed below.

1. Creating a policy needs only a policy name and a policy description. To create a policy, you need
to use the IMetaFrame4::CreatePolicy method. Upon successful return from this call, the object
has already been created in IMA data store. This is different from the application and load
evaluator objects, which are not created until the SaveData method is called.

2. Prior to CPS 4.5, after a new policy object is created using the IMetaFrameFarm4::CreatePolicy
method, you need to call LoadData to reload the object although it basically does nothing. In
CPS 4.5, this requirement is removed. You don’t need to call LoadData on an object that is just
created. You can set its properties right after it is created.

3. There are several SaveData methods defined in the interfaces related to policy. Only the
IMetaFramePolicy2::SaveData method actually writes the data to the IMA data store. The other
SaveData methods defined in interfaces like IMetaFrameVCPolicy, etc. don’t save the data to
IMA.

4. The policy filter data is saved separately. So if you’ve made changes to a policy filter, you need
to call IMetaFramePolicy::SaveFilterData to save the changes. Accordingly, you need to use the
LoadFilterData to load the policy filter. Ideally, there should have been a SaveData method for
the MetaFramePolicyFilter object.

In association with the printer object, the following code shows how to create a session printer policy.

Set f = CreateObject("MetaFrameCOM.MetaFrameFarm")

f.Initialize MetaFrameWinFarmObject

Set p = f.CreatePolicy(MetaFrameUserPolicyObject, "Print", "session policy")

Set u = p.SessionPolicy2

The Ultimate Guide to MFCOM

97

u.DefaultToMainClientPrinter = MFPolicyEnabled

u.EnableDefaultToMainCP = 0

Set c = CreateObject("MetaFrameCOM.MetaFrameCredential")

c.Initialize "Password", "UserName", MFAccountDomainUser, _

 "AccountAuthorityName", MFAccountAuthorityADS

Set pr = CreateObject("MetaFrameCOM.MetaFramePrinter")

pr.InitConnection "YourPrintServer", "YourPrinter", c

Set ps = CreateObject("MetaFrameCOM.MetaFramePrinter")

ps.AddPrinter pr

u.PrinterConnections = ps

p.SaveData

Note that the above code runs only on CPS 4.5. If you run it on CPS 4.0, you need to call p.LoadData right

after the CreatePolicy method.

5.9 FARM

The farm object is huge but rather simple in construction. Basically it serves two purposes, one is to act

as the root of the entire Presentation Server object hierarchy; two is to provide an execution context for

all the MFCOM methods.

There are other lesser roles, for example, there are numerous methods that create the other objects,

e.g. CreatePolicy. In this sense the farm acts like an object factory. If the farm context role is essential,

this factory role is critical. Since COM provides object factory calls, these farm factory calls are not

necessary. Ideally, we should have made all calls follow one consistent object instantiation scheme.

The farm object is big primarily because it defines many farm wide settings.

6 DEBUGGING MFCOM

MFCOM is not easy to use. When something goes wrong, you often just get an exception or error code

that really doesn’t help you much. There are some general guidelines, however, you can follow to help

you debugging your code.

First of all, there are typically the following three types of errors.

1. Error or exception code 0x80040005 (2147745797). In COM, this error is defined as E_FAIL. This
is the most common error you encounter with your MFCOM calls.

The Ultimate Guide to MFCOM

98

2. Error or exception code 0x80070005 (2147942405). In COM, this is defined as E_ACCESSDENIED.
This error is typically returned when your code is running in a context that has insufficient
permissions to access MFCOM.

3. Some RPC exception. This is typically returned when your code is not even able to access
MFCOM.

6.1 TRACING

One of the best ways to assist debugging your MFCOM code is using CDF tracing. CDFView is a tool that

is typically not installed on your system when you do your Presentation Server installation. But it is

included in your Presentation Server CD as one of the diagnostic tools. To turn on tracing on CDFView

for MFCOM, go through the list of modules and find “MF_Service_MFCOM”. Add it to the list of modules

to trace and then start running your code.

The MFCOM trace messages are very cryptic. They are meant to be read by Citrix engineers who have

access to the MFCOM source code. But they are also useful for end users. Here is an example of how

tracing can help debugging the three typical scenarios listed above.

1. If you receive E_FAIL, examine your MFCOM trace. You should be able to find some MFCOM
messages about some IMA call returned error code that is non-zero. Typically an IMA error code
is encoded as 0x8xxxxxxx. The MFCOM trace should also show the name of the function that is
being called. You, as an end user, may not be able to decipher the error message. But the error
message itself indicates that your MFCOM access is normal and it’s the particular operation that
has failed. In this case, maybe you can try to do something else and see if other operations
work.

2. If you receive E_ACCESSDENIED, examine your MFCOM trace. You may or may not see trace
messages being printed out.

a. If you don’t see any MFCOM trace shown, it’s a good indication that the
E_ACCESSDENIED error is returned by COM. In other words, your system configuration
needs to be looked at. For example, make sure your user account is configured in the
DCOM Users Group.

b. If you see some MFCOM trace and some trace message shows error code 0x80000016,
it’s a good indication that some IMA call is returning an access denied error. If so, it
means that the Citrix permission checking is denying you access.

3. If you receive some RPC error, typically you shouldn’t see any MFCOM trace messages related to
the call that causes an RPC error. And typically the RPC error is usually returned when the first
MFCOM property or method is accessed. If you can confirm using your trace, you should focus
on the MFCOM and COM configuration to ensure that MFCOM is properly configured.

There are also a large number of MFCOM object reference counting trace messages. These messages

help in diagnosing memory leak related issues.

The Ultimate Guide to MFCOM

99

All MFCOM users should know how to use CDFView and collect some trace data when contacting Citrix

for support.

In addition to tracing MFCOM, some IMA components can also be traced. The following table shows

which IMA components to trace for certain MFCOM objects.

There should be no strict application of the table. It serves as just a guide for you to determine the best

ways to product good trace data. Tracing all of the above modules certainly gives the most information.

But it also makes it hard to collect and use the trace data, which contains much information that will not

be useful for someone to find the problem. Try to collect as much data as you can as long as the data is

manageable.

6.2 DATA STORE VIEWER

Another great tool is DsView, which is also included in your installation CD image. DsView stands for

“Data Store View”. It’s a GUI tool that allows you to browse the IMA database. There are online Citrix

documentation and KB articles on using DsView. Here we only need to describe how to use it to debug

MFCOM related problems.

MFCOM Object IMA Component to trace

Farm IMA_Sals_MFServer, IMA_Subsystems_ComSrv, IMA_Subsystems_MFServer

Server IMA_Sals_Comsrv, IMA_Sals_MFServer, IMA_Subsystems_ComSrv,
IMA_Subsystems_MFServer

Application IMA_Sals_Comapp, IMA_Sals_Content (when content is involved),
IMA_Sals_MFApp, IMA_Sals_RadeApp (when streamed application is involved),
IMA_Subsystems_Comapp, IMA_Subsystems_Content (when content is involved),
IMA_Subsystems_MFApp, IMA_Subsystems_RadeApp (when streamed application
is involved)

Policy IMA_Subsystems_Policy

Load evaluator IMA_Sals_LMS, IMA_Subsystems_LMS,

Administrator IMA_Sals_AdminTool, IMA_Sals_UserMgmt, IMA_Subsystems_AdminTool,
IMA_Subsystems_User, IMA_Subsystems_UserWin

Permission related IMA_RemoteAccess

Folder IMA_Sals_Group, IMA_Sals_Comapp (application folder), IMA_Sals_Comsrv (server
folder), IMA_Subsystems_Group

Session IMA_Sals_MFServer, IMA_Subsystems_MFServer

The Ultimate Guide to MFCOM

100

DSView can be used to confirm changes made to farm, server, application, and other configuration data.

For example, if you want to modify some published application properties, you can run your MFCOM

code and also use DSView to see if the change has really been made to the backend data base. At Citrix,

we use it in testing MFCOM.

7 OTHER SDKS

MFCOM isn’t the only thing that you can use to develop solutions in Citrix environments. MFCOM is big

and comprehensive. But there are some situations where MFCOM-based solutions don’t exist or not the

best.

7.1 WFAPI

WFAPI is the original Citrix Server application interface. It is based on the Microsoft Windows Terminal

Services API. In fact, Citrix developed the Microsoft WTSAPI and wrapped the same internal calls as

WFAPI. Most of the calls provided by WFAPI are available in MFCOM. But WFAPI has the following

differences and they may be important for certain types of applications.

1. WFAPI calls are pure C calls, which yield the best performance. Also for C programmers, they
don’t need to learn COM. Not using COM also reduces system overhead.

2. WFAPI calls are server-oriented. It’s best to use the calls locally on a Presentation Server.
3. Shadowing is available only in WFAPI. It is very hard to support shadowing in COM.
4. Virtual channel applications should be written in WFAPI instead of MFCOM. The virtual channel

protocols are more friendly to C than COM.
5. WFAPI calls are not subject to IMA’s OBDA permission restriction. WFAPI work without using

IMA.

It is possible to access WFAPI in .NET, if such access is desired. I’ve converted some of the server side

WFAPI-based virtual channel examples to .NET.

7.2 ICO AND VCSDK

ICO stands for ICA Client Object, which provides a COM/ActiveX interface to access the ICA Win32 Client.

The calls allow you to configure your ICA Client installation, launch ICA sessions, and manage ICA

sessions.

VCSDK consists of two parts. The server side is the WFAPI. Usually when people refer to VCSDK, they

mean the client side component. The VCSDK provides a C-style API interface for users to write virtual

channel drivers, which can be used to create driver-like modules that are loaded by the ICA Win32

The Ultimate Guide to MFCOM

101

Client*. There is a wide range of applications of VCSDK, for more details, refer to my white paper

Supporting Client Devices Using the Citrix Virtual Channel SDK.

7.3 POWERSHELL-BASED INTERFACE

PowerShell is a Microsoft command and scripting interface that is gaining wide support and user

acceptance. Citrix is considering to develop a PowerShell-based interface to replace MFCOM entirely.

Part of the reason for such a consideration is that most of the farm and server properties will be moved

Active Directory. That will result in a large portion of MFCOM properties being invalid.

The PowerShell-based interface offers the following advantages over MFCOM:

1. It is task-oriented interface. Commands are defined for performing specific tasks.
2. It does not require registration on the client side.
3. Commands are directly exposed to an end user. There is no need for writing scripts to access the

commands.
4. Commands will be simpler. Most of the scripts written in this document can be re-written just as

the command line specs.

* VCSDK for other client platforms are also available from Citrix.

http://community.citrix.com/download/attachments/1703963/supporting+client+devices+using+the+citrix+virtual+channel+sdk.pdf

